

Enhancing energy security with renewable energy – risks and opportunities

Presented at
European and International perspectives on the
German "Energiewende"

22 April 2013
Organised by
Konrad-Adenauer-Stiftung (KAS)
Berlin, Germany

Global energy trend check

Source: BP Statistical Review of World Energy, June 2012

4/30/2013

Global energy trend check (contd.)

Coal and Crude oil

Natural Gas

^{*} Northwest Europe marker price

Fuel prices over the years

Energy Security: Need of hour

- Ever increasing energy demand
- Rising and fluctuating fuel prices impacts the international trade
- Unstable political conditions in the donor countries – a geopolitical threat
- Energy supply remains continued yet disrupted
- The climate change effect rising CO₂ emissions environment risk
- Fuel diversification is a much required step
 - for reducing the dependence
 - for economic development of the country
- The eventful 2011!
 - Arab Spring

5

Fukushima disaster

Energy security: a wholesome perspective

Energy security with renewable energy

- Long term security with free fuel supply, indigenously produced
- Diversification of fuel will help in fuel independence
- Buffers from national and international shocks through flexibility and resistance
- Low carbon emitting technologies
- Help in meeting peak load demand from grid connected power generation
- Energy generation from RE can reach to remotest parts of the nation through decentralised and distributed generation – supporting energy access

RE global status

- Ocean energy is slowly picking up through small pilot projects, total global capacity of 527 MW
- At global level about 1760 MW of CSP has been added

Opportunities

- Creating green jobs
 - **5** million jobs in 2010 (REN 21, 2012)
- Huge potential yet to be tapped
- Cooperative R&D research
- Technology innovation for more applications
- Decentralised generation promoting energy access
- Distributed generation through RE promotes energy savings, efficiency and management

RE total global energy share scenarios

About 64 countries with future RE targets to contribute to the country's energy mix

Risk Comparison across fuels – an indicative matrix

Risks / challenges	Coal	Oil	Gas	Nuclear	Hydro	RETs
Climate change risk	Н	Н	M	L	L	L
Other environmental concerns	Н	Н	M	Н	Н	L
Prices volatility	M	Н	Н	M	L	L
Fuel Supply uncertainty	Н	M	M	L-H	L	M
Technology supply uncertainity	L	L	L	L	L	Н
Lack of Finance support	M	L	L	Н	Н	Н
Seismic risk	M	M	M	M- H	Н	L
Infrastructure requirement	L	L	Н	Н	M	Н
Technology uncertainty	M	L	L-H	Н	M	Н
Geopolitical risk	M	Н	M	Н	L	L
Regulatory and governance risk	Н	M	M	M	L	Н

H – high risk, M – medium risk, L – low risk

Perceptions and concerns in RE

 Energy security

Government/

Policy makers, nodal agencies

Community

Civil Societies, NGOs, Research Institutes

- Manufacturers, project developers, consultancies, generators, FIs
 - Industry

- Workers health
 - Accidents
 - Aesthetics
- Local biodiversity
- Technology/raw material availability
- Market conditions
- Inaccurate resource information/ resource availability
- Financial viability
- Infrastructure availability
- Delayed clearances
- Institutional support
- · Waste generation and management
- Local resistance
- Operational risks
- Security threat
- Political instability

- Suitable regulatory framework and policies
- Abiding to emission and pollution standards
- Geopolitical risk

- Land acquisition and compensation
- Water availability and management
- benefit distribution
- Environment protection

Project based risks: Solar

Stage	Process within stage	Type of risk
System components manufacturing	Extraction of pure siliconManufacturing of CdTe based thin film	Environment, Economic, Market and Human Health
Site selection	Resources assessmentAcquisition of land	Technical, social, political
Site clearance	Acquisition of land	Political, regulatory, social
Financial closure	 Finalisation & documentaion of above steps PPA and other contracts negotiation Bank requirements finalised 	Regulatory and financial
System commissioning	 Availing incentives under govt. schemes Operation and maintenance 	Environmental, technical and economical
System de- commissioning	 Proper dismantling of CdTe based thin film Scrap generation of mounting structure 	Environmental / health
13		4/30/2013

Project based risk: Wind

Stage	Process within stage	Туре	of risk
Site selection	Resource assessmentSite ownership/leasing of land		economic and political
Site clearance	Signing of power purchase agreement		gulatory and omical
Financial closure	 Finalisation and documentaion of above steps PPA and other contracts negotiation Bank requirements finalised 		gulatory and omical
System operation	Turbine power generationBlades moving		economical ronmental
System de- commissioning	Wind blades	Enviro	nmental

Project based risks: Biomass

Project based risks: Geothermal

Stage	Process within stage	Type of risk
Site selection	Resource assessmentsite ownership/leasing of land	Technical, economic and socio-political
Construction phase	Plant drillingDisposal drilling effluents	Environmental and accidental
Site clearance	Signing of power purchase agreement	Political, regulatory and economical
Financial closure	 Finalisation and documentaion of above steps PPA and other contracts negotiation Bank requirements finalised 	Political, regulatory and economical
Generation activity	Depends on type of geothermal reservoirs (water dominated or stream dominated)	Environmental, bio- diversity, technical and accidental

Technology specific risks

Risks associatie d	Public policy	Supply and demand	Resource information	Technology performance data	Grid integration	Operationa I risks	Intangibl e risks*	Extent of current risk analysis
Solar thermal	Н	M	L	L-H	Н	M	M	L
Solar PV	Н	М-Н	Н	M	M	M	L-M	M
Biomass	Н	L	M	L-H	M	M	Н	M
Wind	M	М-Н	M	M	Н	M	Н	M
Geotherm al	M	L	Н	Н	M	М-Н	L	M
Wave	Н	L	L	Н	Н	Н	M	L
Tidal barrage & lagoons	Н	L	M	М-Н	Н	Н	Н	M

^{*} Stakeholder opposition, public perception

Major project set up risks

Regulatory policies

Land use, acquisition and compensation

Financial support and viability

Accurate resource information

Country risk

RE Supporting policies for grid connected power

	REGULATORY POLICIES					FISCAL INCENTIVES				PUBLIC FINANCING		
Countries	Feed-in tariff (incl. premium payment)	Electric utility quota obligation/ RPS	Net metering	Biofuels obligation/ mandate	Heat obligation/ mandate	Tradable REC	Capital subsidy, grant, or rebate	Investment or production tax credits	Reductions in sales, energy, CO ₂ , VAT, or other taxes	Energy production payment	Public investment, loans, or grants	Public competitive bidding
High Income	1	4	5	2	6	3	1	3	2	4	 1	2
Upper middle Income	1	5	3	2	4	6	1	3	2	4	1	2
Lower middle income	1	4	3	2	5	5	3	2	1	4	=	=
Low Income	1	2	-	1	-	-	2	3	1	-	1	2

Scale 1

6

Most widely adopted

Least widely adopted

RE global status in leading countries

RE global ranking

	RE power (incl. hydro)	RE power (w/o hydro)	Solar PV	Wind power capacity	Biomass Power capacity	Geothermal direct heat use
1	China	China	Germany	China	United States	United States
2	United States	United States	Italy	United States	Brazil	Philippines
3	Brazil	Germany	Japan	Germany	Germany	Indonesia
4	Canada	Spain	Spain	Spain	China	Mexico
5	Germany	Italy	United States	India	Sweden	Italy

- Spain leads in the CSP installation
- Europe has the biggest market so far for biofuel

Recommendations

- Risks to be scientifically tackled and sorted
- Public Awareness required
- Government should have stronger and stricter policies and regulations to support national development and international competition
- Incentivisation is essential for RE growth
- Knowledge and sharing is required to accelerate global revolution of RE

Conclusions

- Renewable hold strong position and share in energy transition
- Technology advancing and innovating
- Prices are falling
- Risks are opportunities
- > There is need out there!

Thank you

Siddha Mahajan Research Associate Renewable Energy Technology Applications Area The Energy and Resources Institute siddha.mahajan@teri.res.in