

Global Climate Alliance

For Accelerated Climate Action

TABLE OF CONTENTS

I	Foreword and Acknowledgements	5
П	Executive Summary	7
Ш	Why We Need a Global Climate Alliance	12
IV	Becoming a Member	17
٧	Driving Transformation Pathways	21
VI	Adaptation and Mitigation Financing Solutions	25
VII	Ensuring Compliance	41
/111	India's Net Zero Pathways: A Case Study	44
IX	References and Bibliography	51
Χ	Contributors	59

I. FOREWORD AND ACKNOWLEDGEMENTS

The Global Climate Alliance (GCA) Collaborative is an independent research effort to evaluate how Global South countries can best secure the support of Global North countries to address the economy-wide impacts of climate change, including both adaptation and mitigation measures. Over the past two years, several academic institutions and think tanks have been collaborating on these issues and pooling their individual research efforts. This report offers the Collaborative's perspectives on how a GCA can assist the Global South in reaching net-zero greenhouse gas (GHG) emissions by mid-century.

The GCA initiative builds on multiple detailed modelling studies that indicate that net-zero is net-positive. The United Nations Environment Program has estimated that current policies will lead to a 2.8°C increase in temperatures by 2100. Such accelerated global warming is likely to lead to disastrous economic impacts around the world. On the other hand, if countries commit to the Paris Agreement's goal of limiting temperature increases to 1.5°C, the Global South will benefit from faster GDP growth, better public health, higher job creation, and more energy security.

Accordingly, the GCA Collaborative is proposing an open and inclusive global agreement to massively accelerate the Global South's progress to net-zero emissions. As GCA members, countries would: (1) commit to binding Paris Agreement-aligned transformation pathways with absolute near-term targets (both economy-wide and sectoral); (2) reconcile transformation roadmaps in key tradable sectors to prevent carbon leakage; and (3) implement a comprehensive climate finance package that would result in trillions of dollars of incremental climate financing from the Global North to the Global South.

We would like to acknowledge and appreciate the research contributions of the following institutions: Konrad-Adenauer Stiftung (Timm Anton, Jan Cernicky, Ritika Jajoo, Karin Jancykova, Denis Schrey), Shakti Foundation (Anshu Bharadwaj, Shubhashis Dey, Koyel Mandal, Vedant Monger), World Resources Institute India (Varun Agarwal, Ulka Kelkar, Deepthi Swamy), London School of Economics (Hans Peter Lankes, Nick Robins, Nick Stern), McKinsey & Company, DIW Berlin (Karsten Neuhoff, Jesse Scott, Sangeeth Raja Selvaraju, Heiner von Luepke), Observer Research Foundation (Samir Saran, Mihir Sharma), The Fletcher Climate Policy Lab at Tufts University (Amy Jaffe, Tarun Gopalakrishnan, Easwaran Narassimhan, Kelly Sims Gallagher),

Willy Brandt School of Public Policy, University of Erfurt (Andreas Goldthau), and Amar Bhattacharya, Ajay Chhibber, Leonardo Garrido, Jamshyd Godrej, Varad Pande, Deborah Ramalope, John Sterman, and Akhilesh Tilotia in their individual capacities.

We very much appreciate Konrad-Adenauer-Stiftung for their project management and financial support to the Collaborative. We would also like to thank the International Solar Alliance for their support in releasing and publicising this report.

Signed, Jayant Sinha

II. EXECUTIVE SUMMARY

Unabated climate change. The Paris Agreement set out an ambitious target of restricting the increase in average global temperatures to 2.0°C by 2100, preferably 1.5°C. According to the IPCC, greenhouse gases from human activities have already resulted in about 1.1°C warming above preindustrial levels. This global warming has triggered relentless climate change, leading to extreme weather events, rapid species extinction, major droughts, melting ice sheets and glaciers, unprecedented heatwaves and historic levels of flooding. Unfortunately, while countries have reiterated their decarbonisation targets, greenhouse gas emissions have continued to rise. Consequently, the United Nations Environment Program is now projecting a significant rise in average global temperatures (2.8°C by end of the century) under current policies.

Previous climate agreements have had only limited impact in reducing GHG emissions. The United Nations Framework Convention on Climate Change (UNFCCC) processes resulted in the historic 2015 Paris Agreement. As part of this Agreement, 193 parties committed themselves to reaching the 1.5°C temperature limit while following the principle of common but differentiated responsibilities (CBDR). However, the Paris Agreement did not provide sufficiently strong incentives for accelerated climate action, instead relying largely on voluntary and nationally determined commitments (NDCs). Unfortunately, NDCs have not been ambitious enough and GHG emissions have not declined as anticipated.

Net-zero is net positive, but is currently not attainable for the Global South. Many expert groups have conducted detailed economic modelling studies on net-zero GHG emission pathways for Global South countries. With the recent rapid reduction in the price of decarbonising technologies (such as solar and wind, electric vehicles, and new sources of protein), virtually every country is considerably better off when pursuing net-zero pathways. These studies also indicate that a full economy-wide transformation will be required with annual investment requirements in the range of 2-4% of GDP. Such a large-scale green transformation will increase GDP growth, create more jobs, improve air quality and public health, and reinforce energy security. Thus, decarbonisation will significantly enhance the development of Global South countries.

Unfortunately, given their limited resources and financial systems, it is simply not feasible for low- and middle-income Global South countries to finance

such an economy-wide transformation within the next two or three decades.

Meanwhile, even as the Global South struggles to finance mitigation measures, it is being forced to deal with the negative impact of unabated climate change. Extreme weather events such as flooding, storms and droughts require disaster management and climate insurance, not to mention substantial relief operations. Age-old agricultural practices must be adapted for a changing climate. Infrastructure must be made climate resilient and capable of handling much greater variations in weather parameters. Power grids have to be expanded to cope with much higher temperatures and more-frequent heat waves.

A Global Climate Alliance for accelerated climate action in the Global South is urgently required. An open and inclusive GCA needs to be established, with membership open to all countries. Such an Alliance should immediately increase decarbonisation targets for its members, with particular focus on the world's major GHG emitters. As part of the Alliance, following the CBDR principle, Global North countries will have significant accountability for providing large-scale financial and technological assistance to the Global South. The Alliance design should provide strong financial incentives for Global South and North member countries to cooperate for mutual benefit while simultaneously preventing carbon leakage by non-members. Moreover, the Alliance should build on all existing agreements for adaptation and mitigation efforts. Finally, existing institutions should be restructured and strengthened to deliver on the vast financing and technology flows that will be required to drive accelerated climate action.

Proposed Global Climate Alliance design. The proposed GCA comprises two groups: Group A members would commit to following net-zero pathways that lead to major GHG emission reductions starting in 2030 and then net-zero emissions by 2060 or 2070. Group B members would commit to following net-zero pathways that lead to quantified transformative results in key sectors. These could include the share of renewable energy, shares of public and fossil free transport, low-carbon buildings, efficient use of materials and share of recycling as well as near-zero-emission material production. Combined, the commitments to these decarbonisation actions will be designed to achieve major GHG reductions starting in 2025 and net-zero by 2050 or before. Since the CBDR principle is at the heart of the proposed Alliance, Global North countries are expected to join Group B and Global South countries to join Group A. However, all countries can pursue

transformative actions based on sectoral cooperation, and will obtain and provide mutual support for such transformative activities.

Global North members will commit to contributing funds to a climate financing pool to be administered by an existing global institution (such as the World Bank or the IMF). Funds can be generated through various objective and well-defined methods such as carbon tax programs, redirection of SDRs, or ODA assistance. Global South members will be the recipients of various types of financing and technology flows depending on their transformation commitments. Those Global South members committing to the more ambitious Group B transformation targets will receive significant grant capital to achieve these targets. Countries can choose to join either of the two groups – they will have to decide which transformation pathway they would like to follow.

Legally binding commitments for transformation pathways. While both groups would be required to commit to legally binding targets, the level of commitment will differ between groups. An upfront requirement would be to commit to national decadal transformative targets and emissions reduction targets consistent with the Paris Agreement. These national commitments would need to be guaranteed through appropriate legislation passed in each member country and by establishing national emissions reduction systems.

Aligned transformation policies for key tradable sectors with agreement on appropriate standards. Countries motivated to reach climate neutrality for their major emitting sectors (for example steel, aluminium, cement, fertilisers, and automotive) should cooperate closely, including on reconciling transformation pathways across the GCA. It should be noted that policy risk is one of the major concerns for climate investors, particularly in the Global South. By coordinating where possible on joint policy initiatives, the Global South can attract significant levels of investment at lower cost. For example, jointly developed product standards can create market opportunities for more efficient and easily recyclable products, based on materials from near-zero emission production processes.

At the same time, countries could preclude the sale of products from those countries where producers fail to meet the relevant standards as a result of not following the necessary transformation pathways. Accordingly, GCA members should collaborate on aligning policies in key tradable sectors and providing mutual support for jointly achieving the transformation pathways. The GCA will act as a forum for member countries to agree on sectoral standards. It will also provide support for national policy design and

implementation, including on carbon pricing with robust carbon leakage protection, green public procurement and a sectoral policy package for transport, industry, building, agriculture and forestry.

Highly attractive GCA financing package for its members. To date, the Global North has struggled to deliver on its climate finance commitments; the COP26 Summit in Glasgow highlighted that Global North countries were unable to provide their promised US\$100 billion per year for the Global South. Currently, various estimates indicate that Global South countries are spending around US\$400 billion per year on climate adaptation and mitigation measures. However, economic studies suggest that Global South countries will have annual climate finance requirements of more than US\$2 trillion by 2030. Much of these will have to be commercial investments to decarbonise sectors such as power, transportation, basic materials and real estate.

The GCA seeks to address this vast financing gap. To address climate adaptation needs, the GCA is proposing substantial annual financial flows for Global South members across multiple initiatives, such as:

- **Just Energy Transition Programmes**, to assist Group B Global South countries to move rapidly to net-zero by 2050.
- **Climate Innovation Foundation**, for climate research and to fund research fellowships.
- Climate Resilience Fund, to assist in climate-related disasters and resiliency improvements.

To address climate mitigation needs, the GCA proposes the following financial standards and resources for Global South members to accelerate climate investments by institutional investors:

- Standardised green taxonomy and reporting standards to ensure global consistency and transparency for climate investments.
- Long-term currency hedging swap lines available as required to swap Global South currencies into Global North currencies at fixed depreciation rates.
- Credit guarantees to protect against capital losses and payment risks.
- Climate Insurance Pool to cover catastrophic climate events.

• **Climate Fund-of-Funds** to deploy annually into Global South private equity and venture capital funds.

These initiatives will require tens of billions of dollars of annual commitments, as it is important to ensure that companies and entrepreneurs are assured adequate financial support. Deploying these funds in Global South countries will also dramatically increase overall commercial investments. To facilitate financial system flows from the Global North to the Global South, greenfocused investment agencies, such as the Indian National Investment & Infrastructure Fund, need to be identified in the South.

GCA Secretariat to facilitate treaty implementation. Governance and compliance support for the GCA will need to be provided by a permanent secretariat. The GCA will also have several committees, including on key sectors for policy alignment, implementation agencies to ensure monitoring, reporting and compliance as well as a specific committee to facilitate the delivery of the financial package. The GCA should be initiated immediately by a core group of G20 members, with membership remaining open to all countries.

• • •

The proposed GCA will be a historic, game-changing alliance. Although it builds on multiple existing climate agreements, it is designed to provide real momentum in combating climate change. It is a coalition of the willing, but hopefully all G20 countries - representing 85% of global GHG emissions - will join the Alliance. In return for binding near-term and longer-term transformation targets, GCA members from the Global South will receive a highly attractive financing package to massively accelerate adaptation and mitigation measures.

III. WHY WE NEED A GLOBAL CLIMATE ALLIANCE

INTRODUCTION

Over the course of the coming decades, dealing with climate change will become a key focus area for both public and private sectors. This is gathering pace at a faster rate in the Global North, where actions against global warming are gaining prominence among the public. The presence of climate change in the Global South discourse, particularly amongst the citizens, is now gaining momentum. The floods and heat waves faced by many Global South countries this year, most notably in South Asia and East Africa, have pushed climate change matters to the top of the public agenda.

Figure 1.An Indian farmer carries wheat crop harvested from a field on the outskirts of Jammu, India on Thursday.

An unusually early, record-shattering heat wave in India has reduced wheat yields. (Channi Anand/AP)

Globally, there is a consensus that previous climate agreements have not achieved their desired targets. While the agreements have sought to be truly inclusive - the most recent example being the Paris Agreement with 193 Parties – they have provided a foundation and conceptual framework to allow for transformative action. It now requires focused action to achieve the targets. Taking the current baseline of climate action, it will only be possible to achieve the ambitious 1.5°C, or even the necessary 2.0°C target of the Paris Agreement, with additional focused government policies. For example, EN-ROADS¹, an interactive climate model of Climate Interactive and the MIT Sloan Sustainability Initiative, projects a 3.6°C temperature increase by 2100 if we continue to move as now. Similarly, the UNFCCC is now projecting a

significant rise in average global temperatures (2.8°C by end of the century, based on current NDCs submitted).

Global climate action is required now to achieve the necessary target of 2°C by 2100. To facilitate this, international organisations such as the United Nations (UN), under its United Nations Framework Convention on Climate Change (UNFCCC), have been a forum for multiple climate discussions, resulting in the landmark agreements of Rio, Kyoto, and Paris. The following charts show the per capita and absolute emissions reductions over the past years. In both scenarios, it is clear that the reductions were almost negligible for developed countries following both Rio and Kyoto, and were negative for developing countries, which continued to increase their emissions. For developed countries, the emissions reduction following Paris is only slightly higher, but remains slow. There are suggestions that the agreements under UNFCCC did not provide adequate incentives or opportunities for developing countries to reduce their emissions more rapidly. Over the years, the contribution of developing countries to total emissions has only increased, with per capita emissions and absolute emissions also reflecting this fact.

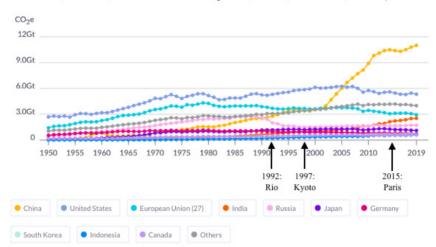
Figure 2

Historical GHG emissions

Data source: PIK; Location: G20; Sectors/Subsectors: Total excluding LULUCF; Gases: CO2; Calculation: per Capita; Show data by Countries. CO2e per capita 28t 21t 7.0t 1955 1960 1950 2019 Paris United States Russia Australia Canada Saudi Arabia South Korea South Africa Germany

Source: Gütschow, J.; Günther, A.; Pflüger, M. (2021): The PRIMAP-hist national historical emissions time series v2.3.1 (1850-2019). zenodo. doi:10.5281/zenodo.5494497; G20 CO2 per capita emissions excluding LULUCF

CLIMATEWATCH


Figure 3

Historical GHG emissions

CLIMATEWATCH

CLIMATEWATCH

Data source: PIK: Location: G20: Sectors/Subsectors: Total excluding LULUCF: Gases: CO2: Calculation: Total: Show data by Countries.

Source: Gütschow, J.; Günther, A.; Pflüger, M. (2021): The PRIMAP-hist national historical emissions time series v2.3.1 (1850-2019), zenodo. doi:10.5281/zenodo.5494497; total CO2 G20 emissions excluding LULUCF

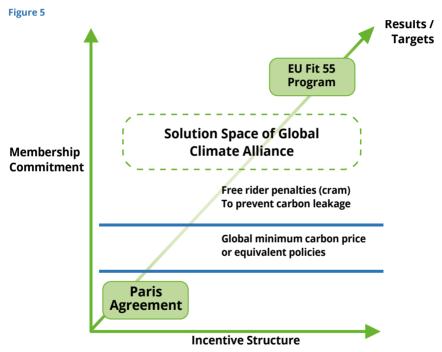
Figure 4

Non-Annex-I Parties to the Convention

Historical GHG emissions Data source: PIK; Location: Annex-I Parties to the Convention, Non-Annex-I Parties to the Convention; Sectors/Subsectors: Total excluding LULUCF; Gases: CO2; Calculation: Total; Show data by Regions. 2019 CO2e 35.6Gt 36Gt 27Gt 18Gt 9.0Gt 0 1959 1965 1983 1989 1995 2001 2007 2013

Source: Gütschow, J.; Günther, A.; Pflüger, M. (2021): The PRIMAP-hist national historical emissions time series v2.3.1 (1850-2019). zenodo. doi:10.5281/zenodo.5494497; CO2 contributions of Annex I (developed) and Non-Annex I Parties (developing

Annex-I Parties to the Convention


ELEMENTS OF THE GLOBAL CLIMATE ALLIANCE

The GCA effort builds on the German G7 proposal of a Climate Club. The GCA has three major aspects: membership, incentives, and compliance. Each aspect has its own elements that together define the GCA in its entirety. They are as follows.

- Targets: Nationally Determined Contributions (NDCs), including overall long-term climate targets in line with the 1.5°C end-of-century target, sector-wise decadal transformation pathways.
- Commitments: Countries to enact domestic laws or policies in order to achieve the transformation pathways.
- Common but Differentiated Responsibilities (CBDR): Representing principles of equity, and to be fulfilled through climate finance and technology support from the Global North to the Global South.
- Financial and technological flows: Instruments for implementing CBDR principles to assist the transformation in the Global South.
- Policy cooperation: Transformation pathways concentrating on specific high-emissions sectors, focusing on mitigation, adaptation, and capacity building.
- Funding sources: Dedicated climate finance pool raised from Global North countries through various mechanisms such as a global carbon incentive program, SDR pooling, MDB contributions, and ODA assistance.
- Climate financing system: Enhanced role for Multilateral Development Banks (MDBs) and Private Financing Institutions (PFIs) in financing adaptation and mitigation measures.
- Dedicated funds: Multiple climate funds established and scaled up to support climate solutions in Global South countries including Just Energy Transition Programs, Climate Innovation Foundation, Resiliency Funds, long-term currency hedging instruments, credit guarantees, insurance pools, and climate fund-of-funds for various regions.
- Monitoring, reporting and compliance: Effective reporting processes to provide transparency for cooperation mechanisms, allow for mutual learning, and enhance compliance.
- Governance: Translating the political commitments by heads of states and countries into processes, with regional and sectoral structures capable of delivering, reviewing, and refining the transformative mechanisms, policies and financing tools.

TOWARDS A GLOBAL CLIMATE ALLIANCE

While considering the most appropriate framework for the GCA, we have understood that the level of commitment from the membership is directly related to the incentives available. The greater the incentives for a country to remain committed to the agreement, the stronger that commitment would be (and vice versa). The Paris Agreement represents a low in the commitment-incentive function, whereas the EU is extremely high. The space for the GCA lies between these two, one where commitments are realistically high and so are the incentives. Green financing will drive green transitions, while incentives will drive commitments.

Source: Chart conceptualised and created by the authors

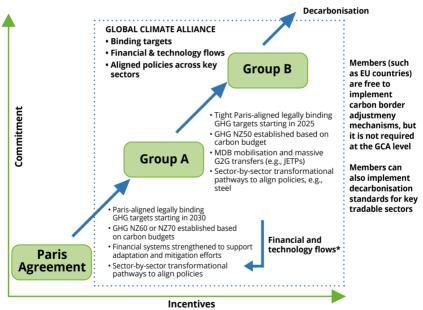
IV. BECOMING A MEMBER

As a global challenge, climate change requires global response, enhanced collaboration and actions that take account of the different needs and challenges faced by countries around the globe.

Reflecting the required systemic approach needed for tackling the climate change challenge, the GCA - with its structure and institutional framework - should mainly act as an enabler. It should have a strong focus on strengthening cooperation on sectoral level, ensuring that all key actors - including policy makers - sit at the same table, and together cocreate and shape their transformation pathways towards net-zero.

Therefore, countries entering the GCA would become part of a staged membership model, one which reflects member countries' needs and challenges, their level of ambition and commitments and sets goals, particularly for decadal targets and the year targeted for reaching net-zero. The GCA aims to become an inclusive and open alliance for all countries, with differentiated membership criteria.

Such an Alliance should immediately raise transformational targets for its members, with focusing on the world's major GHG emitters. As part of the Alliance, following the CBDR principle, Global North countries will have significant accountability for providing large-scale financial and technological assistance to the Global South. The Alliance design should provide strong financial incentives for Global South and North member-countries to cooperate for mutual benefit, while simultaneously preventing carbon leakage by non-members.


MINIMUM REQUIREMENTS FOR A COUNTRY TO JOIN THE GCA

- 1. Statutory/legally binding Paris Agreement-aligned² economy-wide GHG emissions reduction targets starting 2030 (Group A) or 2025 (Group B). Decadal commitments to GHG emissions reduction that is based on either a statutory net-zero goal, and fair share estimation based on global carbon budget, both consistent with the 1.5°C goal
- 2. Detailed and evidence-backed sectoral transformation plans in line with their decadal commitments.

The proposed GCA comprises two groups: Group A members would commit to following net-zero pathways leading to major GHG emission reductions by 2030 and then net-zero emissions by 2060 or 2070. Group B members would

commit to following net-zero pathways leading to quantified transformative results in key sectors. These could include the share of renewable energy, shares of public and fossil-free transport, low-carbon buildings, the efficient use of materials and share of recycling as well as near-zero-emission material production. Combined, the commitments to these decarbonisation actions will be designed to achieve major GHG reductions by 2030 and net-zero by 2050 or earlier. Since the CBDR principle is at the heart of the proposed Alliance, Global North countries are expected to join Group B and Global South countries to join Group A. However, all countries can pursue transformative actions based on sectoral cooperation, and will obtain and provide mutual support for such transformative activities.

Figure 6
Proposed CBDR-Based Global Climate Alliance Framework

*Developing countries in Group B will also be entitled to the same financial flows as Group A developing countries/LDCs

Source: Conceptualised by authors

ADJUNCT MEMBERS

Key actors, who - together with policy makers - will shape the required transformation pathways, including already existing sectoral alliances.

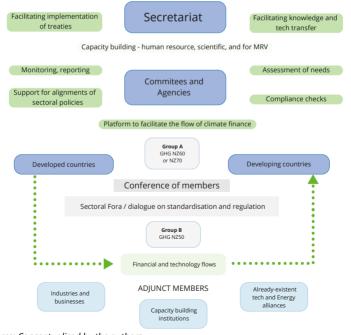
Such GCA multistakeholder fora would include (1) policy makers; (2) funders and investors, (3) CSOs, (4) industry and business (clustered per sector), (5) capacity-building institutions; and (6) already-existent alliances (such as the International Energy Alliance, the GEAPP, the European Tech Alliance, the Global Carbon Alliance etc.).

The GCA can support member countries in achieving their targets in two ways: (1) through policy and analytical modelling support on their sectoral transformation pathways, (2) through unlocking the investments and financing required to make such a transformation happen. The GCA aims to support countries to:

1. Reach the larger goal - the 1.5°C Paris Agreement

A large emissions gap remains between what is needed for 1.5°C and current NDCs, which are projected to lead to a temperature increase of 2.8°C by the end of the century. In its latest report, the IPCC found that to keep the 1.5°C goal alive, global emissions need to be cut by 43% below 2019 levels by 2030. This requires governments to present more ambitious targets. Under the GCA, members would be required to ensure that the targets are in line with the overall targets of the GCA.

2. Meet implementation needs and unlock investments and financing


Accelerated financial support from developed countries is a critical enabler for enhancing mitigation action in many developing countries and addressing inequities in access to finance, including the cost of finance, financial conditions and applicable terms.

The GCA seeks to address the financing challenge by proposing substantial financial commitments through multiple initiatives. Additionally, it proposes several financial standards and resources for the Global South member-countries, in order to increase investments by institutional investors. The detailed proposal can be found in this report.

3. Connect key actors

Countries themselves know which sectors are crucial for them. They also know which sectors need to pursue a transformation pathway or to accelerate innovation and/or scale up innovative solutions and targets. Any measures here need to be coordinated if they are to unlock long-term private / public strategic investments. The GCA should also support countries on those transformation pathways through analytical modelling. Together, these will help identify what a multilateral or bilateral collaboration requires to accelerate and reach the targets, and how the GCA architecture should be set in order to assist countries and politicians in making tough decisions. Reaching goals requires strong, close cooperation, seeing the bigger picture and creating new, sustainable trade. With its sector-by-sector, step-by-step approach, the GCA should not act as a platform for signing any global GCA treaty; rather, it should be an enabler for countries to sign long-term, bilateral treaties.

Figure 7

Source: Conceptualised by the authors

V. DRIVING TRANSFORMATION PATHWAYS

An alliance is similar to a club: you pay a fee in return for enjoying the benefits of membership. However, unlike a traditional climate club, the GCA does not stress an 'international target carbon price' or 'penalties for non-participants'.3³ Instead, under the GCA, Global South members get guaranteed access to financial and technological flows. Meanwhile, a commitment to economy-wide greenhouse gas emission reduction targets. Relevant sectoral mandates - for example, industrial standards - act as the membership 'fee'. The Alliance is based on a model of positive incentives and cooperation.

PRINCIPLES OF POLICY ARRANGEMENTS

Operationalising an alliance is guided by principles, and CBDR serves as the core principle for this Alliance. To achieve the Paris Agreement targets, the Alliance needs to 'accelerate action', balancing the act of 'fostering sectoral alignment' while 'managing policy diversity. As the transformation pathway will vary between countries, flexibility in achieving the commitments underpin the recommendations.

The *statutory decadal* commitments underpinning the Alliance reflect the agenda of accelerating action. Similarly, the policy arrangements do not specify what instruments the country should deploy to meet their commitments, be it command-and-control regulations or pricing. The arrangements also do not recommend the policies of Alliance members; they are free to choose the policy mix that works best under their domestic conditions. Instead, the Alliance identifies transformational sector pathways that provide space for aligning policies and standards under policies.

COMMITMENTS UNDER THE GCA

Countries will need to commit to:

- 1. Statutory/legally binding Paris Agreement-aligned⁵, economy-wide GHG emissions reduction targets starting 2030. The targets should be absolute greenhouse gas emission reduction, eg X MtCO2e;
- 2. Long term net-zero target, consistent with 1.5°C goal;
- 3. Submitting detailed and evidence-backed sectoral transformation plans in line with their decadal commitments (the GCA Secretariat will assist in analytical work).

ILLUSTRATIVE SECTORAL TRANSFORMATION PATHWAYS

While countries chart their own transformation pathways, under the Alliance, the focus will be on identifying transformation sector targets and then, working sector-by-sector to achieve GHG neutrality. These transformation pathways for key IPCC sectors will be aligned through *deep collaboration* via sectoral working groups under the Alliance. In line with CBDR, sectoral targets will be consistent with the country's decadal / net-zero commitment. Countries will work on their sectors of choice; those where they can maximise emissions reductions given their capabilities and commitments. In the following section, we outline some sectoral targets that could comprise a country's policy mix⁶.

- 1. Industrial Emissions Policy: Committing to industrial standards and targets in line with their net-zero/decadal targets. These could cover the share of climate-neutral (near-zero emission) technologies such as CCUS and hydrogen-based in the primary production process as well as other material efficiency and recycling targets. This would initially cover five major industry sectors; iron and steel, cement, chemicals and petrochemicals, aluminium as well as pulp and paper. The deadline for adopting the standards may be extended based on the net-zero target of a country. Collaboration will be on an industry-by-industry basis.
- 2. Low-carbon Energy Mix: Plan B member-countries could commit to a target of a total consumption energy mix made up of x% of low-carbon sources by 2030. Such a measure, primarily aimed at the power sector, would be transformational in removing dependency on fossil fuels. Alternatively, a member committing to Plan A may commit to this renewable energy target mix by 2040, or to having renewable energy sources comprise y% of the mix by 2030.
- **3. Energy Efficiency Measures:** Members may commit to improving the energy intensity of GDP by x% annually or to reducing energy consumption by y% annually. This could either be through energy efficiency measures by reducing consumption. This sectoral target would translate, on-the-ground, to energy efficient buildings and appliances.
- 4. Share of Public Transport: Increase the share of public transportand rail/water-based freight transport, in order to limit the carbon emissions from investing in, and operating, individual mobility and road-based freight transport.

5. Zero-emission Vehicles: In line with their net-zero targets, all new vehicles entering the market in GCA member-countries could be zero-emission, and emissions from old vehicles measured as gCO2/ km should be progressively reduced towards this goal.

For sectors where a transformational sector target is not viable, countries may work on an emissions reduction target instead, aligning their targets based on their decadal commitments.

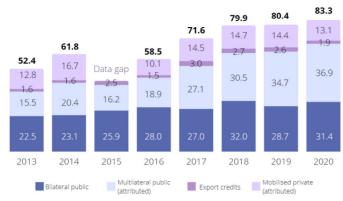
- **6. Non-industrial Emissions Policy:** Small, non-industrial sectors such as agriculture, small industries and waste (taken as a whole) could commit to reducing GHG emissions by x%, in line with their net-zero targets.
- 7. No-debit Rule for LULUCF Sector: Similarly, in the Land Use, Land Use Change and Forestry (LULUCF) sector a net absorber of emissions GCA member-countries could adhere to the 'No-debit' rule instead. GHG emissions from the sector will have to be compensated for with an equal amount of emissions removal. Any additional removal would then count towards relaxation in other policies in the mix.

CO-BENEFITS OF ALIGNING TARGETS

A co-benefit of working sector-by-sector to align sector policies would be the alignment of standards in areas where it is mutually beneficial to do so, and doing so at minimal additional cost. "The justification for harmonisation is that eliminating regulatory differences among nations reduces the transaction costs associated with doing business across borders". Aligning standards provides 'policy certainty' to markets, allowing them to eliminate that risk from their cost calculations. The benefits will spill over to trade and investments in GCA member-countries, particularly in the tradables sector.

As an illustration, members could harmonise energy-efficiency standards for appliances; indeed this is already happening in many parts of the world. A report from the World Energy Council reads, "Labelling programmes introduced in developing countries are based on the experience of OECD countries and use models that have already been proven: the European label has been used as a model in Brazil, Tunisia, China, and Iran...". Likewise, mutual recognition of tests could be a co-benefit for both trade and the environment, and could also be extended to battery standards for electric vehicles.

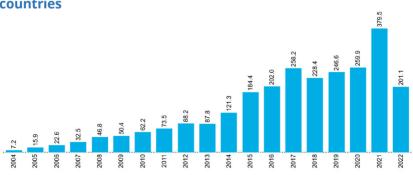
In conclusion, cooperation on sectoral transformation pathways anchored in strict emissions reduction commitments provides a better way for countries to cooperate and still accelerate climate action. The approach is fundamentally different from 'climate clubs', instead providing a 'win-win-win' solution for the climate, for countries and for markets.


VI. ADAPTATION AND MITIGATION FINANCING SOLUTIONS

"India expects developed countries to provide climate finance of US\$1 trillion at the earliest...I consider it my duty to raise the voice of developing countries." This statement by the Indian Prime Minister at COP26 reflects the trillions of dollars of climate finance that the Global South needs immediately to achieve the Paris Agreement targets. The Climate Policy Initiative (CPI) reports, "[Globally,] climate finance must increase by at least 590% – to US\$4.35 trillion annually by 2030 – to meet our climate objectives⁹." The Intergovernmental Panel on Climate Change (IPCC) pegs the global climate investment requirement at US\$1.6–3.8 trillion annually. Even if we were to estimate climate finance requirements proportionately to GDP, emerging markets and developing economies (around 58% of global GDP, according to the IMF) would need US\$2.2-2.5 trillion annually.

The CPI and IPCC estimates are just two of the many studies that indicate figures in the trillions of dollars. In clean energy itself, the IEA estimates annual capital spending needs to "expand by more than seven times, to above US\$1 trillion" in emerging and developing economies by late 2020s to be in line with a 2050 net-zero target. Similarly, the 'Race to Zero' Initiative, under the aegis of the UNFCCC, estimates a climate investment requirement of around US\$2.2-2.7 trillion annually to achieve net-zero in these economies¹⁰. The World Bank highlights the need for US\$1.6 trillion in annual investments until 2030 in order to meet climate-resilient infrastructure needs in low and middle-income countries. This represents around 4.5% of their GDP.¹¹

Studies in both private and public institutions echo the same message - climate investments need to be scaled to the trillions of dollars, rather than the billions that were pledged and are currently flowing. Janet Yellen, US Treasury Secretary, also acknowledged that "while wealthy countries have promised billions of dollars to tackle climate change, the real cost is in the trillions". A news article in *Nature reads*, "Compared with the investment required to avoid dangerous levels of climate change, the US\$100 billion pledge is minuscule." Even with the US\$100 billion pledge, data from the OECD shows that just US\$83.3 billion of climate finance from developed nations to developing countries was actually mobilised and provided during 2020.


Figure 8
Climate Finance provided and mobilised (2013-2020)

Source: OECD, Aggregate trends of climate finance provided and mobilised

Currently, climate-related investments in emerging economies are critically insufficient relative to the trillion-dollar targets. In 2021, emerging economies invested only around US\$380 billion in energy transition sectors such as renewable energy, electrified transport, hydrogen and sustainable materials, among others. As per Climate Policy Initiative, Africa accounted for just 5.5% of global climate investments. Three-quarters of global climate investments were concentrated in East Asia and Pacific, Western Europe and North America, while the remaining regions received less than a quarter. Moreover, in 2021, some 90% of global climate finance was directed toward mitigation.

Figure 9
Energy transtion investment (\$bn), historic in developing countries

Source: Bloomberg NEF Portal

The Global South needs support for scaling climate finance across both mitigation and adaptation to ramp up climate action to Paris Agreement levels. The bulk of this expected investment will have to be market-driven since major economic sectors such as power, transportation, industrial, real estate, and mining must switch over to climate-neutral technologies. However, the Global South simply has neither sufficient investable capital nor sufficient financing capabilities to achieve this rapid transformation. In fact, market forces are grossly inadequate for addressing the climate finance challenge. The global financial system will have to be reengineered to mobilise sufficient movement of capital for adaptation and mitigation from the Global North to the Global South

GCA MUST DELIVER CLIMATE ADAPTATION FUNDS

Climate finance for adaptation will have to largely be grant money (G2G transfers), through specifically targeted funds. As of 2020, around US\$30 billion of climate finance provided by the Global North went towards adaptation activities, whereas the annual requirement in 2030 is estimated to be around US\$160-340 billion, an increase on the earlier estimate of US\$140-300 billion. The International Institute for Environment and Development reported that the UN's 46 'least-developed countries' received only US\$5.9 billion in adaptation projects between 2014-18. The underperformance of adaptation funding calls for specifically targeted funds built on models that have worked so far.

Global South countries under the GCA could benefit from Just Energy Transition Programs (JETP), modelled along the lines of the one in South Africa. More recently, the G7 under the German presidency affirmed their intent to work on the JETPs with partner countries such as Indonesia, India, Vietnam, and Senegal. These programmes could be targeted at Global South countries willing to join Group B countries in the GCA and take on more demanding transformation targets.

The JETPs would fund actions such as prematurely decommissioning coal-fired power plants. Plans for decommissioning coal plants, for instance, would also need to help upskill the children of plant employees and relocate existing employees to other sectors. As needs for decarbonisation vary between countries, the JETPs must be country-led and country-owned. Substantial grant money from GCA resources, as well as concessional loans based on commitments from countries, could be provided annually. The GCA Secretariat would assist development of the JETPs and monitor their implementation.

A **Climate Innovation Foundation** to strengthen research capabilities for climate change solutions (for both adaptation and mitigation) has also been proposed. Universities and research institutions within the GCA would apply for climate research funds to set up research studies and labs. The GCA would award multiyear research grants to understand climate adaptation challenges and solutions. Finally, to sustain such research, the GCA would establish a prestigious Research Fellows programme to fund two-year research programmes at selected leading institutions.

A **Climate Resilience Fund** would help countries face and respond to climate disasters. The Africa Adaptation Acceleration Program (AAAP) offers a template for this. A large proportion of these funds would be devoted to developing climate resilient infrastructure in those countries that lose millions of dollars to power outages caused by extreme rains, drought-induced power shortages and transport disruptions due to flooding. The Coalition for Disaster-Resilient Infrastructure estimated that around 66% of public sector losses in recent climate-related disasters relate to infrastructure damage. Building resilient infrastructure also generates high social returns. The rapid deployment of this fund - via existing agencies such as UNHCR, Doctors without Borders and existing Disaster Management Authorities in each country - would greatly improve climate response. Finally, providing these funds through the GCA Secretariat would streamline this process.

THE GLOBAL FINANCIAL SYSTEM NEEDS TO BE REENGINEERED TO FINANCE MITIGATION

Addressing the trillion-dollar climate mitigation challenge will require enormous amounts of private climate finance for the Global South. The global financial system must be reengineered to get commercial, return-seeking capital to flow from the Global North.

The Global North already has a vast and diverse financial system in place, with trillions of dollars of assets under management. These are invested on the basis of deep financial expertise spread across capital markets, institutional investors, sovereign wealth funds and insurance companies. As of 2020, pension funds in the OECD countries alone had assets worth US\$34.2 trillion. The Norwegian sovereign wealth fund alone has assets worth \$1.3 trillion under management. Data from Bloomberg NEF shows that the OECD countries have issued sustainable debt²⁰ amounting to US\$4.4 trillion since 2012, which accounted for about 84.3% of sustainable debt issued worldwide. Similarly, Bloomberg reports that Europe accounted

for half of global ESG assets under management in 2018.21

During the COP26 presidency of the UK and Italy, Mark Carney "gathered more than 500 large financial institutions with balance sheets worth US\$150 trillion in a voluntary pact to try to limit global heating to 1.5C above preindustrial levels22 under the banner of Glasgow Financial Alliance for netzero. These statistics indicate that there is a vast amount of investable capital available in the Global North. If channelled through a financial system that prices climate change externalities, Carney believed that "ambitious climate action is not just possible, but will be profitable". As Dr Fatih Birol, Executive Director at IEA commented, "There is no shortage of money worldwide, but it is not finding its way to the countries, sectors and projects where it is most needed."

Many Global South countries need to reinforce their risk supervision and contract enforcement, transparent price discovery and other financial regulations. Without such measures, the development of private financial markets will be hindered. This can be seen in measures such as the strong correlation between minimum government bond-holding mandates and concerns about derivatives depth.²³ Therefore, a large financing gap arises between the vast commercial capital available in the Global North and the fragmented financial systems in the Global South, with low domestic savings and capital intermediation abilities.

MDBs HAVE NOT MOBILISED SUFFICIENT COMMERCIAL CAPITAL

There are multiple financial institutions from the Global North deploying capital to assist in the green transformation of Global South. These include MDBs, existing global financial institutions, Development Finance Institutions (DFIs) as well as a few private-sector green funds. Despite the large climate financing gap, these institutions have not mobilised a great deal of capital for climate finance. This is unfortunate, because these institutions were created precisely to bridge this financing gap and provide financial intermediation. Climate finance mobilised by MDBs for low- and middle-income countries was around US\$38 billion in 2020.²⁴ Of this, 32% went toward adaptation and 65% towards mitigation.

Development finance, which has developed over the past 75 years or so, has largely focused on providing concessional loans to governments and public sector institutions; however, the volume of funding has been insufficient to meet the enormous climate financing needs. Of the total mitigation finance

toward low- and middle-income economies in 2020, around 75% was in the form of investment loans. In adaptation finance, which should largely be grants-based, investment loans comprised 61.6% of total MDB finance.

Climate co-finance, particularly private sector co-finance, is another area where the role of MDBs in mobilisation has been limited. In 2020, public co-finance in low- and middle-income economies was around US\$32.2 billion - or about 75% of the MDB co-finance - and around US\$11 billion was private co-finance. The World Bank's guarantee and insurance programs have been underutilised.²⁵ As an illustration, the product mix of IFC's US\$12.4 billion mobilisation in FY2021 was 87% loans and 9% equity. Guarantees and risk-management products represent only around 4% of the mobilisation at US\$475 million and US\$40 million, respectively.

REGULATORS MUST ESTABLISH CONSISTENT POLICIES

Establishing private sector investment flow requires that the rules and institutions first be defined. This entails defining policies and regulations on which financial transfers will be based and how they will take place, the standards on climate reporting to be adhered to and the institutions to conduct the transfer of financial flows.

Establishing a Consistent Green Taxonomy

Several standards bodies are working on a consistent green taxonomy to funnel investments into genuine climate solutions. Regulators need to develop regulations which are:

- consistent and clear in how they define climate investments (at sectoral, industry and activity levels) and is forward looking to a low-carbon future while allowing transition to green
- objective in nature, supported by clearly defined metrics and thresholds
- proportionate in impact
- aligned to a low carbon pathway and adapt to the impact of climate change
- green-aligned through the economic lifecycle of each activity
- aligned and harmonised with international standards, while ensuring alignment with local priorities.

Developing Effective Disclosure Policies

The fundamental question on disclosures is whether they should cover only climate, or should also be extended to include ESG. Globally, disclosures began with climate and gradually progressed to ESG. The Basel Committee on Banking Supervision (BCBS) is looking at climate risk disclosures for financial institutions. It has issued a consultative document containing principles for the effective management and supervision of climate-related financial risks, requesting public comments. The BCBS is exploring the use of the third pillar framework to promote a common disclosure baseline for climate-related financial risks.

Firms need to receive verification or provide assurance on information they have disclosed. Such verification processes are typically implemented by appointing third-party auditors. Practices in this area vary by jurisdiction, ranging from self-certification to third-party verification. The need for such a function entails a cost as well as technical expertise and resources. This also underscores the importance of capacity building in this area. In such a scenario, there could be a time-bound switchover to third-party certification.

Some countries require the production of a separate sustainability report for disclosing ESG information. Others require the inclusion of ESG-related information in the annual report or on the entities' websites. To provide adequate visibility to investors, as well as to ensure companies take the issue seriously, the recommendation is that the disclosure be a part of an integrated annual report and hosted on their websites. There should preferably be a separate chapter on climate and ESG disclosure in the financial statements, with both qualitative disclosures and with greater availability of climate-related data, even quantitative disclosures.

When identifying and prioritising ESG issues for disclosure, regulators and reporting, entities may apply different materiality approaches. There are two overarching perspectives on materiality in ESG issues: the 'outside-in' and the 'inside-out' perspectives. Taking an outside-in perspective means considering the ESG items as material, which influences the value or performance of the entity. Taking an inside-out perspective implies that ESG items are material when they are impacted by the entity (also referred to as environmental or social materiality).

The most prevalent definitions of ESG materiality are as follows: 'financial materiality' (reflecting the outside-in perspective), and 'double materiality'

(reflecting both the outside-in and the inside-out perspectives). Given the direction of travel for global disclosure standards (for example, the European Commission has introduced double materiality as part of their disclosure guidelines), it may be prudent for India to begin with financial materiality and adopt double materiality in a phased manner.

The TCFD framework could act as the baseline for climate-related financial disclosures, with additional disclosures prescribed based on assessment by sectoral regulators. For example, the Basel Committee on Banking Supervision (BCBS) has set up a Task Force on Climate-related Financial Risks (TFCR). It issued a consultative document on climate-related financial risk on 16 November 2021 to guide regulatory and supervisory action on climate risk in future policies for banks.

DBs MUST BE STRENGTHENED TO MOBILISE PRIVATE CAPITAL FLOWS

MDBs must act as a catalyst in mobilising Global North capital flows to the Global South. This can be accomplished in two ways. First, by reducing risk for private financial institutions investing in the Global South, and second by increasing investment flows to the Global South, particularly for pioneering new markets (for example alt-proteins). Both activities will require major changes to existing MDBs in terms of skill enhancement, management depth and balance sheet expansion.

MDBs can be instrumental in reducing risk for private financial institutions in the Global South. The principal risks for these institutions include currency depreciation due to poor macroeconomic management, non-payment or delayed payment of contractual billings, extreme weather events and a range of policy-based risks.

GCA Could Offer Risk Management Solutions via Blended Capital

Commercial investing in the Global South faces risks at various levels. This is particularly the case for those transition technologies in the process of market adoption, which pose many systemic factors that can impact returns. Some of the key risks that need to be addressed are: (1) currency; (2) high cost of capital which increases the costs of deployment; (3) policy risks; and (4) billing, payments and collection risks.

MDBs can play a critical role in mitigating these risks. There are at least four products/structures that can be aggressively scaled up by MDBs to help reduce investment risks. This will not only lead to a material lowering in the cost of capital for projects but will also - in many cases - help make projects

viable for execution. MDBs have typically focused on largely debt and some equity investments; risk-management products and guarantees account for only a miniscule portion of their mobilisation. This must materially change.

• Long-term Currency Hedging: The flow of capital from the Global North to the Global South is impacted by the volatile and depreciating currencies of the latter. It has generally been observed that Global South countries, particularly given inflationary pressures in their local economy, tend towards substantial depreciation in the long run. This creates a challenge for long-term Global North private investors who are seeking to protect their required returns in their local currencies. Given the relatively smaller sizes of Global South country economies, deep and liquid currency hedging markets do not exist for investors to offload their risks.

Creating reasonable long-term assurance on the value of the local currency in a harder one can help mitigate Global North investors' concerns over volatility and uncertainty. Note that what is being discussed here is only the rate of the currency depreciation and not of the underlying investments, which may have their own trajectory. One way that long-term currency hedges can gain credibility is if the central banks of countries have swap arrangements between themselves to assure that hard currency will be available at the time of repatriation. The value of such hard currency over time can be broadly agreed upfront. This commitment of the two central banks to honour this arrangement can be routed through an MDB, which can aggregate and create an appropriate market. A credible counterparty, acting as intermediate, can also help increase confidence, as well as innovation, for commercial investors.

• Payment Guarantee Institutions: MDBs could provide an annual sum, scaled up over time, in credit guarantees - either partial or full - to the Global South Treasuries. This would protect against any potential losses that arise. Guarantees would be provided to local financial institutions for extending credit to green companies in the country. Where a country has a track record of high losses and defaults, it will automatically lead to higher pricing for guarantees. The Global South Treasuries would also guarantee timely (30-day) collection from state buyers. The G2G arrangements under the GCA would ensure that working capital of guarantors is not exhausted.

- Climate Insurance: According to internal calculations by the Bank of England, the number of extreme weather events has trebled, causing an eightfold-increase in property destruction. An annual sum, for a catastrophic risk pool, could be made available to Global South GCA members. The model would match Global South premium contributions with an equivalent amount in the Global North countries. All countries could participate in a global risk pool to ensure adequate capital for reinsurance companies. Insurance to be extended must be backed by continuous studies that assess the impact of climate change in business valuations, with continuous methodology updates for assessing climate risks to businesses.
- Climate Fund-of-Funds: Lastly, annual funds (potentially managed by the IFC or the EIB) could be made available each year to anchor new Global South venture capital and private enterprise climate funds.

Investment-Focused MDBs Should be Expanded

Only around 20% of MDB financing goes into commercial investments, either through pure return-generating instruments or through blended capital instruments. Moreover, only a few institutions – such as the IFC, BII, OPIC, and the ADB – are investing billions of dollars of debt and equity per year into companies. As a result, MDBs have not built up the expertise in deal origination, risk assessment, investment monitoring, portfolio construction and exit generation required for successful private sector equity and debt investing in a market-driven green transformation.

Global North governments must increase the equity capital allocated to the few MDBs with private sector investment skills - so-called 'Investing MDBs'. These investments can be staged over time, allowing the Investing MDBs to build, over the next 5-10 years, the staff, skills and processes to upscale their annual private sector investments at least tenfold.

Investing MDBs need to be materially larger than currently, both from the perspective of the balance sheet (greater assets/investments) and their ability to channel more capital in any given year. The hundreds of billions of dollars required in investments by the private sector need to be ably supported by MDBs both through debt and equity products, and through the risk-sharing products discussed earlier. With the ability to help manage risks, MDBs will be in a far better position to channel and crowd-in private capital into green transition.

LOCAL GREEN INVESTMENT AGENCIES ARE NEEDED

The world requires many large green financing institutions that can massively accelerate market-driven capital flows from the Global North to the Global South. These new institutions can work alongside existing incountry financing institutions to catalyse their green financing activities. Such institutions could be established in each major Global South country or in clusters (for example, to cover some of the Western African countries). Collectively, these institutions, supported by significantly strengthened MDBs, would constitute a global green financing network.

Green Investment Agencies Can Play Vital Role

Green Investment Agencies (GIAs) should be able to undertake six important functions that are not being fulfilled adequately today.

- 1. Most urgently, GIAs have to take an ecosystem perspective of how different sectors should be transformed in each country. This comprehensive yet practical perspective is difficult to achieve within siloed government departments, narrow financial institutions and think-tanks. For example, deploying electric buses nationally requires bus manufacturing (including battery availability), sufficient grid power, dedicated charging depots, adequate financing solutions, integration with travel portals and trained manpower for maintenance and operations. A delay in any of these could easily hinder ecosystem development by many years. Such sectoral perspectives require industry experts, management expertise and deep financial acumen. Furthermore, these perspectives will have to be developed for different countries and provinces within each country.
- 2. GIAs must be able to work with a wide range of stakeholders to help develop such ecosystems, including government policy makers at national and provincial levels to ensure supportive policies. For the electric buses example, GIAs have to be able to ensure that the bus manufacturing supply chain is adequately established and that critical investments are jumpstarted through innovative start-ups. GIAs must conduct in-depth market research to understand barriers to consumer acceptance and pricing expectations. In addition, existing bus companies will need support during such a transition, with a strong focus on existing and new workforce demands.
- 3. In addition to an ecosystem perspective and stakeholder engagement, GIAs will also have to mobilise a wide network of in-country financial

partners. Taking the electric bus example once again, GIBs may have to assist in funding the upscaling of electric bus production among existing manufacturers. GIAs and their financial partners may have to provide leasing and financing support to operators to allow them to rapidly adopt electric buses. Government agencies (such as the Small Industries Development Board or Solar Energy Corporation in India) may be able to provide subsidies to electric bus companies or to electricity distribution companies for special tariffs. Leasing companies could require access to low-cost wholesale financing with appropriate currency hedging. Start-up financing for charging companies may be needed to allow them to operate depots. New software solutions could probably also be developed by start-ups to manage bus batteries and develop innovative billing solutions. Thus, in the electric bus ecosystem example, GIAs will probably have to work with asset management companies, commercial banks, leasing companies, venture capital companies, electric distribution companies as well as a wide range of government financing agencies.

- 4. GIAs will have to work with Global North financial players to develop innovative financial instruments that are capable of reducing investment risks and therefore financing costs for the green transformation.
- 5. GIAs can also play a key role in sharing best practices, business models and financing approaches. There may be innovative companies and government programmes in Indonesia that may also work well in India. However, there is no organisation charged with tracking these innovations and then being able to transfer it from one country to another. Regular research reports, conferences and in-country experiments are needed to help cherry-pick the best innovations.
- 6. GIAs can help strengthen private-sector financing expertise in Global South countries. While countries such as India have a mature alternative asset industry with multiple large global and domestic funds, most Global South countries do not have such investment firms.

There are currently many organisations (such as MDBs, investment banks and management consultancies) that fulfil some of these functions. However, few have the national reach, stakeholder credibility, large-scale investment expertise, and policy nous to be able to catalyse massive capital flows from the Global North to the Global South. Some Global South countries already have well-established investment agencies, such as the Indian National Investment and Infrastructure Fund, the Indonesian Investment Authority

and the Brazilian BNDES. These agencies can redirect their focus to climate finance, and can also be set up in other Global South countries.

RAISING FUNDS FOR CLIMATE FINANCE FROM THE GLOBAL NORTH

Trillions of dollars of climate finance have to flow from the Global North to the Global South to accelerate climate action in the immediate future. The challenge for mobilising adaptation finance is that - as the IMF noted in 2022 - "despite its significant benefits for society, it often does not generate sufficient private financial returns". Under the various climate agreements, there has been no concrete commitment from the Global North on the share of individual contributions, while no standard nor formula delineates the fair share that a country must pay. Commitments and pledges to provide finance have largely been voluntary. Therefore, mobilising climate finance flows for the Global South has been challenging and subject to various geopolitical constraints. Owing to a lack of clear demarcation of responsibility, climate action has been trapped in a stalemate: the Global South does not commit to stricter climate action citing concerns of historical inequity, while the Global North does not do so citing absence of commitments from the Global South countries.

The GCA is designed to unlock this stalemate. To that end, it is necessary to outline various fair and objective methods for raising funds for climate finance, particularly from the countries of the Global North. Various mechanisms have been proposed; these include the Global Carbon Incentive (GCI) - as proposed by Professor Raghuram Rajan²⁷ - ODAs and concessional loans as well as additional financing through MDBs. All of these mechanisms (or similar) will have to be instigated to meet the needs of climate finance.

Global Carbon Incentive Program

The GCI offers a mechanism for mobilising funds through a fair and objective calculation. Through this, each country that emits more than the global average per capita emissions (around five tonnes) would pay annually into a global incentive fund. The amount to be paid would be calculated by multiplying the excess (above the global average) emissions per capita by the country's population and the GCI - a predetermined 'price' per ton of emissions. Using the same calculation, a country that emits below the per capita world average would be entitled to receive financial flows.

The concept represents a simple self-financing mechanism that creates uniform incentives for all countries to take climate action. The Global North

will have an incentive to reduce emissions, as they would have to commit a lower volume of funds. The Global South, meanwhile, would have a disincentive to increase emissions, as their share of receivable funds would decrease. The emission calculations would, however, need to be adjusted for carbon emissions embedded in a country's imports.

The GCI would also be equitable, as those countries that have historically been polluters will also have high per capita emissions. The global principle of CBDR would also be respected. Meanwhile, those countries that will have to bear the costs of climate change, but have not been significant polluters, will receive compensation to help adapt to climate change. The mechanism is also consistent with the 'polluter pays' principle. In addition, the mechanism does not impinge on the sovereignty of countries. How a country raises its financing is left to its domestic laws and policies. The volume of funds to be contributed would depend on the agreed-upon GCI. A low price of US\$10 per tonne would not mobilise the trillions needed, but countries also would be wary of committing to a high GCI. The mechanism would, however, be useful for mobilising funds for adaptation at the very least.

Other Proposals to Raise Climate Finance

As well as GCI, there are several alternative proposals for raising adaptation finance. Such finance must be mostly grants-based, as - unlike certain mitigation activities, which can be profitable - it does not generate any returns

- 1. ODAs and Concessional Loans: The Official Development Assistance (ODA) target has been "the best-known international target in the aid field" since the 1970s, wherein economically advanced countries committed to meet a target of "a minimum net amount of 0.7% of its GNP at market prices". As of 2021, net ODA flows from Development Assistance Committee (DAC) members of the OECD were at ~US\$170 billion.²⁸ The UNCTAD reports that "if the G7 countries [alone] had met the 0.7% ODA target in 2020, an additional US\$155 billion would have been available to meet development goals". The OECD reports that "no other DAC country has met the target since it was established, and the weighted average of DAC members' ODA has never exceeded 0.4% of GNP".
- **2. Innovative financing through MDBs:** High-income countries receive 67% of the IMF's SDRs, but these lie idle because they do not need them as much as developing countries. The global financial

community mooted the idea of 'recycling' these SDRs, lending them back to the IMF or to MDBs, which can then repurpose it for climate change. The G20, under the Italian Presidency, pledged almost US\$45 billion from their recent Special Drawing Rights (SDRs) allocation towards vulnerable countries²⁹. A report³⁰ reads, "the G7 has asked finance ministers and central bank governors to develop and review proposals for a voluntary US\$100 billion reallocation of SDRs from countries with excess reserves". While the details are still being negotiated, the report mentions that SDR financing would open up fiscal space for countries to invest in adaptation measures. This proposal would be channelled through the IMF's recently approved Resilience and Sustainability Trust. The Center for Global Development instead recommends that SDRs be channelled through MDBs.³¹ Allowing MDBs to have more lenient gearing ratios would afford them more space to make grants and concessional loans. Together with the ODA³², they estimate that multilateral finance (excluding MDB disbursements) could be increased by 50% in 2025 from 2019 levels, contributing some US\$96 billion or more toward development goals.

Last, in addition to these measures, several reports also call for channel private philanthropy³³ for supplementing climate adaptation through³⁴:

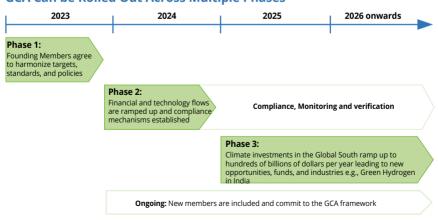
- **1. Sustainability-linked or Development Impact Bonds**³⁵ that are specifically targeted at projects where predetermined social outcomes are the major criteria for providing finance. The issuer receives a bonus, if sustainability target agreed on in advance is met, and pays a penalty if it is missed; and
- 2. 'Pay-for-success' private financing where third-party investors including private investors provide the initial investment and develop a public sector project. The public sector then purchases the project for an amount commensurate with the project's sustainability performance on pre-agreed parameters.

Climate financing for adaptation could be successfully delivered through a combination of these instruments. These methods of raising finance could also be augmented by several other financial measures developed bilaterally or multilaterally. It would be in the self-interest of developed countries to finance and lose a few billions for - as Prof. Rajan mentioned in his Per Jacobsson lecture - "If you fail on both mitigation and adaptation, what is left is migration."

CONCLUSION

Modelling studies indicate that the Global South emissions are likely to continue growing indefinitely, reaching around 80% of global emissions. There are several reasons for continued emissions growth in the Global South. First, negative externalities associated with global warming, air pollution and import dependency associated with fossil fuels have not been priced in. Second, today's policies are inadequate for forcing industries to transition away from fossil fuels. Third, global capital markets are reluctant to invest in the Global South given sovereign risks, policy instability, lack of confidence in payments and contract enforcement, along with weak dispute resolution. Breaking this cycle needs a comprehensive approach that addresses policy risk and financial adequacy. The global financial system will need to be reengineered to mobilise trillions of dollars of climate finance from the Global North to the Global South. This needs substantial grant capital for climate adaptation, a new regulatory and disclosure framework for accelerating private capital flows, revamped MDBs capable of issuing blended capital instruments and of leading in innovative climate finance. Last, it needs stable and transparent climate approaches to financing from the Global North.

VII. ENSURING COMPLIANCE


INSTITUTIONS AND MEMBERSHIP

Bearing in mind the urgency of climate action and the potential of the existing structures, the GCA could be housed within a pre-existing organisation or institution, but with an independent secretariat and governing body. This is recommended in the proposal, and can be modified according to the real-world requirements of the GCA. The finer details - as well as the funding of the GCA - may be decided during the establishment and the negotiation process - based on other externalities - including the nature of membership, interest of the countries involved, and so on.

While there are core differences between the commitment levels of the two levels of the GCA, both will be governed by the same institutional arrangements. The GCA implementation would be largely dependent on the efficiency of the institutional arrangements. Creating new institutions solely for the GCA would be a tedious, administrative and cumbersome process. It would not be politically acceptable to develop a new framework from scratch, and would considerably delay the establishment process.

Given that GCA would be initiated by a core group of members (ideally including the leading emitters such as the EU, India and the US), initial governance support could be provided by a secretariat under the G20, allowing for rapid implementation of initial initiatives.

Figure 10
GCA Can be Rolled Out Across Multiple Phases

Source: Conceptualised by the authors

The GCA should create an institutional framework using a stepwise approach. This will provide it with the required legitimacy, and offer a platform to enable discussion between financial donors and recipients, of sensitive issues such as disagreements over what and how it should be financed, different assumptions about ambition levels, and so forth.

A core component of the GCA would be agreement on the sectoral transformation pathways by several countries. Thus, it is imperative that the GCA is made up of working groups on various sectors to support policy alignment. These pathways would require scientific, as well as political, approval. The decisions can be facilitated through creating sectoral working groups, consisting of both experts and the political leadership, ensuring the buy-in of political decision-makers from the outset.

The GCA has to ensure that the monitoring, reporting and verification (MRV) processes are based on CBDR principles, but are also consistent in formats, data requirement, duration and frequency. Proper MRV mechanisms will ensure that data systems are comparable, allowing the Secretariat and other countries to track members' progress. The authenticity of the data submitted is also an important issue that the GCA will have to solve in the future; however, the solution may emerge during negotiations. Along with strong MRV mechanisms comes the problem of capacity. It is important that the GCA creates capacity-building solutions for developing countries that allow them to undertake continuous reporting and monitoring. The complexity of the MRV challenge requires a solution based on mutual agreement, support and a common goal of combating climate change.

COMMON VISIONS

As members of the GCA, countries join a 'coalition of the willing', by agreeing on the minimum objectives of the Alliance, cooperation, and knowledge sharing; these will provide the foundation for success of the GCA. As a result, the institutional architecture of GCA should be specifically designed to fulfil its key objectives. The types of support required are not specified, as these will emerge from negotiations between member-countries based on their national interests, mutual agreement on best practices, and geopolitical factors.

1. Reaching the larger goal: the 1.5C Paris Agreement

Institutional support is required for:

receiving commitments and national legislation,

- · setting decadal targets,
- ensuring commitments are in line with long-term targets,
- complying with submission of commitments, targets and methods of calculation,
- monitoring, reporting and verifying achievement reports.

Meeting implementation needs and unlocking investments and funding

Institutional support is required for:

- ensuring compliance with financial commitments from the Global North to the Global South,
- setting methods for calculating financial flows,
- providing a platform for facilitating the flow of climate finance.

3. Connecting key actors on sectoral transformational pathways Institutional support is required for:

- creating sectoral forums for the co-creation of transformational pathways,
- facilitating knowledge and technology transfers,
- transferring scientific advice and modelling expertise from the Global North to the Global South,
- building capacity human resource, scientific and for MRV,
- providing dispute resolution mechanisms and serving mutuallyagreed penalties in the event of continued non-compliance.

VIII. INDIA'S NET-ZERO PATHWAY: A CASE STUDY

CONTEXT

India announced its long-term climate target of reaching net-zero emissions by 2070 at COP26 in Glasgow last year.³⁶ There was an upward revision of its NDC targets for 2030 earlier in 2022.³⁷ For emerging economies such as India, the goal of decarbonisation is accompanied by the challenge of delivering economic growth, jobs and improving access to energy. Achieving the country's climate targets implies navigating away from fossil fuel use in all economic sectors, with a potential impact for businesses, workers and public revenues. It also requires upfront capital to create new green energy infrastructure to allow the decoupling of emissions from growth.

At the same time, the transition presents several opportunities. These include reducing energy imports, improving public health and safeguarding the international competitiveness of national industry in an emerging environment of carbon-based tariffs, such as the carbon border adjustment mechanism (CBAM) proposed by the European Union.³⁸

ABOUT THE STUDY

This study by World Resources India explores some of these challenges and opportunities in the context of a net-zero 2070 pathway for India. It uses the Energy Policy Simulator (EPS), a systems dynamics model that enables integrated assessment of climate policy scenarios through 2050, along with their macroeconomic implications.³⁹

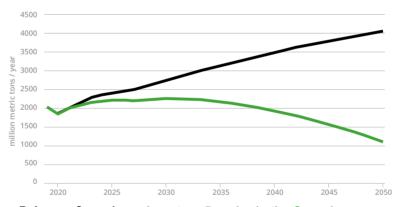
We analyse a Long-Term Decarbonisation (LTD) scenario that would put India on course to achieve net-zero CO2 emissions by 2070. In the short-term, the LTD scenario builds upon existing policy targets for renewable energy, energy efficiency and electric mobility. It also considers the policy-supported medium-term phasing in of currently nascent technologies, such as hydrogen and battery storage, in order to reach ambitious implementation levels by 2050. The results of the LTD scenario are presented relative to a reference scenario, which incorporates existing policies as of 2020. Table 1 summarises the key policy assumptions of the LTD scenario:

Table 1: Key Policy Levers in the LTD Scenario

Policy	Reference Scenario (2050)	LTD Scenario (2050) ^a
Industrial electrification & hydrogen mandate (% substitution of fossil fuels in the industrial sector. Starting from 2025)	0	50%
Hydrogen production via electrolysis mandate (Starting from 2025)	0	100%
Carbon tax (Per tonne of CO2 in power and industry)	0	INR 3500 (USD 50)
EV/H2V ^b sales mandate (% of new vehicle sales) Cars, Buses Light-freight vehicles, Heavy-freight vehicles 2-wheelers, 3-wheelers (H2V sales mandate starting from 2030)	35%, 23% 14%, 4% 38%, 30%	80%, 50% (+25% H2V) 70%, 25% (+45% H2V) 100%, 100%
Material efficiency mandates (Demand reduction for emissions intensive goods relative to Reference scenario)	-	Cement: 15% Iron & steel: 20%
Carbon-free electricity generation (Mandated minimum %)	68%	93% (75%)
Early retirement mandate for coal power (Starting from 300MW/year in 2027)	-	7 GW/year

Notes:

- a. Unless otherwise noted, the policy is linearly implemented starting from 0 in 2020 to reach the full policy setting in 2050.
- b. EV = electric vehicles; H2V = hydrogen vehicles.


KEY FINDINGS

The LTD Scenario significantly cuts emissions, improves human health and delivers better macroeconomic outcomes compared to the reference scenario. Achieving these outcomes, however, implies a profound structural transformation of the economy, which will require significant additional investment. Table 3 summarises the key outcomes.

1. Climate and Health Benefits: The policies in the LTD scenario reduce CO2 emissions in the Reference scenario by about one-fifth by 2030 and two-thirds by 2050 (Figure 11). Total GHG emissions show a similar trend. The improvement in air quality from reduced fossil fuel use helps prevent 5.8 million premature deaths over the period 2022–2050 compared to the reference scenario.

Figure 11

Annual CO2 emissions (in million metric tonnes) as per WRI India

- Reference Scenario Long-term Decarbonisation Scenario
- 2. Sectoral Transitions and Costs: In the power sector, the LTD scenario sees the share of non-fossil sources used in electricity generation fall by almost half by 2030 and by over 90% by 2050 (compared to slightly less than one-quarter at present). Installed capacities of solar PV and onshore wind will increase over twenty-fold and sixteen-fold respectively, and coal will be almost completely phased out by 2050. The transformation is driven by mandates for carbon-free electricity

generation and the early retirement of coal power, complemented by a phased carbon tax (see Table 1).

The decarbonisation of the power sector supports the mandates for fossil fuel substitution (with electricity and/or green hydrogen) in the industry and transport sectors, thereby achieving their emissions mitigation potential. These fuel-switching mandates, phased in from 2025 or 2030, will serve as the main policy levers for decarbonising these sectors in the long term. Total battery storage capacity required (including for grid storage and electric vehicle deployment) will reach 8.5 terawatt-hours (TWh), while green hydrogen production (for use as fuel in industry and transport) will reach 22 million tonnes by 2050, compared to negligible levels currently.

The transition in these sectors will require significant additional capital expenditure compared to the reference scenario. The total additional expenditure in the LTD scenario (in 2018 US\$) amounts to approximately US\$100 billion within this decade, and increases to US\$790 billion and US\$1.9 trillion in the next two decades respectively, as RE infrastructure, EV deployment and green hydrogen production is ramped up. Table 2 provides the estimated capital expenditure for a few key clean technologies in the LTD scenario.

Table 2: Capital expenditure^a by technology and decade in LTD Scenario (in billion 2018 USD)

	2020 - 2030	2030 - 2040	2040 - 2050
Solar PV	101.18	207.21	194.28
Onshore Wind	33.06	145.43	231.24
Battery Storage ^b	109.00	381.98	843.91
Hydrogen Electrolyzers ^c	7.86	96.57	198.15

Notes:

- Does not include capital expenditure on supporting infrastructure, e.g. EV charging stations, hydrogen distribution networks, required for clean technology deployment. Assuming no depreciation of capital or discounting of investments made in the future.
- b. Including for grid storage and electric vehicle deployment.
- c. Required for green hydrogen production for use as fuel. Use of green hydrogen as feedstock not included.

3. Economic Outcomes: The LTD scenario sees a 1.2% increase in GDP in 2030 and a 2.4% increase in 2050 compared to the reference scenario, while generating an additional 4.4 million jobs (including direct and indirect) by 2030, increasing to 9.2 million by 2050. Growth in green sectors, such as clean electricity generation, green hydrogen and electric vehicle production - together with productive public expenditure sustained with the help of revenues from the phased carbon tax – should more than compensate for the contraction in brown sectors such as coal mining, petroleum refining and manufacturing of internal combustion engines. Carbon tax revenues will help offset the drop in government revenue from incumbent petroleum taxes over the course of the transition by widening the tax base to all fossil fuels.

Furthermore, the transition yields greater savings from reduced fuel expenditure in the medium to long term. For example, the reduction in India's energy import bill - driven by a reduction in crude oil imports - could amount to US\$30 billion in 2030 and US\$296 billion in 2050 compared to the reference scenario.

 Table 3: Summary of key outcomes for India in the LTD Scenario

Scenario		Reference	LTD
CO2 emissions (billion tonnes)	2030	2.8	2.3
	2050	4.1	1.1
Emissions intensity of GDP (% change from 2005)	2030	-52%	-61%
	2050	-75%	-91%
Non-fossil electricity capacity (GW) (% share of total capacity)	2030	344 (58%)	383 (63%)
	2050	1044 (76%)	1986 (96%)
Additional investment relative to	2030	-	27.5 (0.5%)
Reference scenario (billion 2018 USD/ year) (% of GDP)	2050	-	247.3 (1.5%)
Change in GDP relative to Reference scenario (billion 2018 USD) (% change)	2030	-	80.4 (1.4%)
	2050	-	362.5 (2.2%)
Change in jobs relative to Reference scenario (including direct and indirect jobs, in million)	2030	-	4.4
	2050	-	9.2
Avoided premature deaths relative to Reference scenario from improved air quality (thousand deaths/year)	2030	-	69.2
	2050	-	502.8

POLICY IMPLICATIONS

Fuel switching - to electricity and green hydrogen - in India's rapidly growing industry and transport sectors, supported by clean electricity generation, are the main levers for long-term decarbonisation. Early, decisive mandates can play an important role in driving down costs through technology diffusion and accelerating technology adoption. A phased carbon price can complement these mandates and serve as an important source of revenue to sustain productive public expenditure during the transition.

The transition will require additional investments of nearly US\$3 trillion over the coming three decades compared to the reference scenario. Internationally supported technology partnerships and concessional financing schemes would be required to attract investment at scale in nascent technologies such as batteries and green hydrogen production. Complementary public policies for example creating supporting infrastructure - such as EV charging stations and hydrogen distribution networks - will play a key role in stimulating private investment.

Implementation roadmaps should consider the distributional impacts and resource implications of the low-carbon transition. While the transition can yield aggregate economic gains, the sectoral shifts would likely result in uneven impacts among industries, regions and sections of population. Moreover, policies such as carbon pricing are likely to increase energy prices in the short term, which can affect low-income populations disproportionately. The scale of transformation also implies increased pressures on critical natural resources such as land, water and materials. A careful consideration of these elements during policy planning can ensure a just and inclusive transition to India's low-carbon future.

IX. REFERENCES AND BIBLIOGRAPHY

Ameli, Nadia, Olivier Dessens, Matthew Winning, Jennifer Cronin, Hugues Chenet, Paul Drummond, Alvaro Calzadilla, Gabrial Anandarajah, and Michael Grubb. 2021. Higher cost of finance exacerbates a climate investment trap in developing economies. Nature Communications.

Bhattacharya, Amar, Meagan Dooley, Homi Kharas, Charlotte Taylor, and Nicholas Stern. 2022. Financing a big investment push in emerging markets and developing economies for sustainable, resilient and inclusive recovery and growth. London; Washington DC: Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science; Brookings Institution.

Bloomberg Intelligence. 2021. ESG assets may hit \$53 trillion by 2025, a third of global AUM, Bloomberg Professional Services. February 23. https://www.bloomberg.com/professional/blog/esg-assets-may-hit-53-trillion-by-2025-a-third-of-global-aum/.

Bouckaert, Stéphanie, Araceli Fernandez Pales, Christophe McGlade, Uwe Remme, Brent Wanner, Laszlo Varro, Davide D'Ambrosio, and Thomas Spencer. 2021. Net Zero by 2050: A Roadmap for the Global Energy Sector. Flagship/Special Report. France: IEA.

Buchner, Barbara, Baysa Naran, Pedro de Aragão Fernandes, Rajashree Padmanabhi, Paul Rosane, Matthew Solomon, Sean Stout, et al. December 2021. Global Landscape of Climate Finance 2021. Biennial. Climate Policy Initiative.

Carney, Mark. 2021. The Price of (Net) Zero Ambition. Working Paper (Lecture). New York: Columbia University.

Chibber, Ajay. 2022. Modernizing the Bretton Woods Institutions for the Twenty-First Century. Issue Brief. Washington DC: Atlantic Council Geoeconomics Center.

Climate Champions. What's the cost of net zero? Race to Zero. November 3, 2021. https://climatechampions.unfccc.int/whats-the-cost-of-net-zero-2/

Committee on the Global Financial System. 2019. Establishing viable capital markets. CGFS Papers. Basel: Bank for International Settlements.

Devarajan, Shantayanan, Delfin S. Go, Sherman Robinson, and Karen Thierfelder. 2022. How carbon tariffs and climate clubs can slow global warming. Working Paper. Washington D.C.: Peterson Institute for International Economics.

Group of Multilateral Development Banks. 2021. Joint Report on Multilateral Development Banks' Climate Finance. Joint Report. London: European Bank for Reconstruction and Development.

IEA. May, 2022. Achieving Net Zero Heavy Industry Sectors in G7 Members. Paris: International Energy Agency.

IMF. October, 2022. Global Financial Stability report. Periodical. Washington DC: International Monetary Fund.

IMF. 2022. Near-Term Macroeconomic Impact of Decarbonization Policies. World Economic Outlook. October 2022, Washington DC: International Monetary Fund.

Jaitly, Akshay, and Ajay Shah. 2021. The lowest hanging fruit on the coconut tree: India's climate transition through the price system in the power sector. Working Paper, Mumbai: xKDR.

McKinsey & Company. 2022. The net-zero transition: What it would cost, what it could bring. Report. Boston: McKinsey & Company.

Narassimhan, Easwaran, Tarun Gopalakrishnan, and Kelly Sims Gallagher. 2021. India's Policy Pathways for Deep Decarbonisation. Monograph. New Delhi: Observer Research Foundation.https://www.orfonline.org/wpcontent/uploads/2021/11/ORF_Monograph_ShapingOurGreenFuture_9Nov.pdf.

Friedman, Lisa and Eshe Nelson. 2021. Janet Yellen, the Treasury secretary, says the U.S. will help raise \$500 million for green bonds. The New York Times, November 3.

OECD. 2018. Climate-resilient Infrastructure. OECD Environment Policy Paper No. 14, Organisation for Economic Co-operation and Development.

OECD. 2021. Pension Funds in Figures 2021. Organisation for Economic Cooperation and Development.

Plant, David Andrews and Mark. 2021. Rechanneling SDRs to MDBs: Urgent Action Is Needed to Jumpstart the Green Equitable Transition. Centre for Global Development Blog Post, October 12.

Rajan, Raghuram G. 2021. A Global Incentive to Reduce Emissions. Project Syndicate, May 31.

Rodrik, Dani. 2018. «What Do Trade Agreements Really Do?» Journal of Economic Perspectives, 73-90.

Rozenberg, Julie, and Marianne Fay. 2019. Beyond the Gap: How Countries Can Afford the Infrastructure They Need while Protecting the Planet. Washington DC: World Bank.

Soanes, Marek, Clare Shakya, Sam Barrett, Dave Steinbach, Nora Nisi, Barry Smith, and Josie Murdoch. 2021. Follow the money: Tracking Least Developed Countries' adaptation finance to the local level. Issue Paper. London: International Institute for Environment and Development.

Stern, Nicholas, and Hans Peter Lankes. October, 2022. Collaborating and Delivering on Climate Action through a Climate Club: An independent report to the G7. London: London School of Economics and Political Science.

The Asia Society Policy Institute. 2022. Getting India to Net Zero: A Report of the High-Level Policy Commission on getting Asia to Net Zero. Report. New York: The Asia Society.

Timperley, Jocelyn. How to Fix the Broken Promises of Climate Finance. Nature Feature. Vol 598. October 20, 2021. https://www.nature.com/articles/d41586-021-02846-3#ref-CR1

UNEP. 2022. Adaptation Gap Report 2022: Too Little, Too Slow – Climate adaptation. https://www.unep.org/resources/adaptation-gap-report-2022. Nairobi: United Nations Environment Programme.

Wharton School. 2016. Innovative Finance: Mobilizing Capital for Maximum Impact. Special Report. Philadelphia: Knowledge@Wharton, University of Pennsylvania.

APPENDIX: OTHER MODELLING STUDIES

The transition to a decarbonised world will have short-term costs but will confer significant benefits that will outweigh these costs. The chapter on the Energy Policy Simulator40 in India offers a case study on the macroeconomic implications of a transition to net-zero by 2070. Indeed, a number of other modelling studies have reached the same conclusion. This chapter briefly presents the findings of a few other studies that have demonstrated 'Net-Zero is Net-Positive', both for India and the world.

Net-Zero is Net-Positive: India

- 1. The Climate Policy Lab hosted at Tufts University estimates that if India raises ambition in its policy to tackle climate change that "maximises job creation through further deep decarbonisation policies" it will reduce emissions by 70% by 2050 as compared to the 'business-as-usual' scenario.⁴¹ In addition, this 'Raising Ambition' scenario "generates an average 3% higher GDP than the BAU and cumulatively adds nearly 8 million new jobs by 2030, rising to a cumulative 43 million jobs over BAU by 2050".
- 2. Similarly, the Asia Society Policy Institute 2022, in collaboration with Cambridge Econometrics⁴² estimates India's GDP will increase between 1-7% over the baseline scenario by 2030, depending upon the ambition in climate policy. In their study, India would see an increase in investment of between 4-22% over the baseline scenario in 2030. It would also see a positive impact on employment of between 0.9-1.8 percent over the baseline by 2060 in most scenarios. This is equivalent to 12–13 million additional jobs in the Indian economy. The study also highlights that India's trade balance would be favourable, "estimated at \$205bn and \$236bn in 2060 in the 2050 and 2070 net-zero scenarios respectively, compared to the baseline (equal to around 1.5% of GDP)" owing to the reduced dependency on fossil fuels.

Net-Zero is Net-Positive: World

The IEA, in its flagship report (Bouckaert, et al. 2021), produced a comprehensive estimate of the effects of transitioning to a netzero world by 2050. Among the positive effects, it highlighted an "annual GDP growth that is nearly 0.5% higher than the levels in the Stated Policies Scenario (STEPS) during the latter half of the 2020s."

Moreover, in the net-zero by 2050 scenario, the report concludes that "there would be 30 million more people working in clean energy, efficiency and low-emissions technologies by 2030", with job losses of around 5 million in the fossil fuel sectors.⁴³

- 1. Similarly, (McKinsey & Company 2022) estimates that:
 - a. "Capital spending on physical assets for energy and landuse systems in the net-zero transition between 2021 and 2050 would amount to about \$275 trillion, or \$9.2 trillion per year on average, an annual increase of as much as \$3.5 trillion from today."
 - b. "The transition could result in a gain of about 200 million and a loss of about 185 million direct and indirect jobs globally by 2050."
- 2. The IMF, in its flagship World Economic Outlook Report 2022, employs a novel Global Macroeconomic Model for the Energy Transition (GMMET) to estimate the short-term costs for output and inflation of transitioning to a decarbonised world. Using different assumptions of the rate at which electricity generation transitions to low-carbon technologies, it estimates these costs to be "somewhere between 0.15 and 0.25 percentage points of GDP growth and an additional 0.1 to 0.4 percentage points of inflation a year with respect to the baseline, if budget-neutral policies are assumed."

ENDNOTES

1 En-ROADS

- 2 Paris Agreement-aligned means emissions reduction targets that are 1.5°C.
- 3 Contrary to theory, simulations in (Devarajan, et al. 2022) show that a climate club committed to a carbon tax of US\$75/tCO2e, without punitive tariffs and even with a holdout from the USA and China, will be more effective than a similar club with a CBAM. A climate club with punitive tariffs will be more effective than one without such tariffs but will need tedious re-engineering of WTO laws.
- 4 Stern, Nicholas, and Hans Peter Lankes. October, 2022. Collaborating and Delivering on Climate Action through a Climate Club: An independent report to the G7. London: London School of Economics and Political Science
- 5 Paris Agreement-aligned means emissions reduction targets that are 1.5°C.
- 6 The figures are illustrative and have been borrowed from the EU's Fitfor-55 package.
- 7 IEA has already defined such standards for the Steel and Cement in Achieving Net-Zero Heavy Industry Sectors in G7 Members.
- 8 Rodrik, Dani. 2018. «What Do Trade Agreements Really Do?» Journal of Economic Perspectives 73-90.
- 9 Global Landscape of Climate Finance 2021 CPI
- 10 https://climatechampions.unfccc.int/whats-the-cost-of-net-zero-2/
- 11 Rozenberg, Julie, and Marianne Fay. 2019. Beyond the Gap: How Countries Can Afford the Infrastructure They Need while Protecting the Planet. Washington DC: World Bank
- 12 https://www.nytimes.com/2021/11/03/world/yellen-green-bonds-climate-change.html
- 13 https://www.nature.com/articles/d41586-021-02846-3#ref-CR1
- 14 https://www.unep.org/resources/adaptation-gap-report-2022
- 15 Soanes, Marek, and Clare Shakya et. al. 2021. Follow the money: Tracking Least Developed Countries' adaptation finance to the local level. Issue Paper, London: International Institute for Environment and Development.

- 16 <u>India Launches Global Coalition for Disaster-Resilient Infrastructure | News | SDG Knowledge Hub | IISD</u>
- 17 Climate-resilient Infrastructure
- 18 Pension Funds in Figure 2021
- 19 As segregated by country of risk
- 20 This includes instruments such as Green Bond, Sustainable bonds and loans, Soc ial Bonds, Sustainability-linked bonds and loans etc.
- 21 ESG assets may hit \$53 trillion by 2025, a third of global AUM Insights | Bloomberg Professional Services
- 22 <u>Mark Carney denies big banks threatened to quit climate finance group,</u> The Guardian
- 23 Committee on the Global Financial System. 2019. Establishing viable capital markets. CGFS Papers, Basel: Bank for International Settlements
- 24 Group of Multilateral Development Banks. 2021. Joint Report on Multilateral Development Banks' Climate Finance. London: European Bank for Reconstruction and Development.
- 25 Chibber, Ajay. 2022. Modernizing the Bretton Woods Institutions for the Twenty-First Century. Issue Brief, Washington DC: Atlantic Council Geoeconomics Center.
- 26 Carney, Mark. 2021. The Price of (Net) Zero Ambition. Working Paper (Lecture), New York: Columbia University.
- 27 <u>A Global Incentive to Reduce Emissions by Raghuram G. Rajan Project Syndicate</u>
- 28 Official development assistance (ODA) Net ODA OECD Data
- 29 <u>G20 to channel 45 billion US dollars to help vulnerable countries, aiming for 100 billion globally</u>
- 30 Bhattacharya, Amar, Meagan Dooley, Homi Kharas, Charlotte Taylor, and Nicholas Stern. 2022. Financing a big investment push in emerging markets and developing economies for sustainable, resilient and inclusive recovery and growth. London; Washington DC: Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science; Brookings Institution.

- 31 Rechanneling SDRs to MDBs: Urgent Action Is Needed to Jumpstart the Green Equitable Transition | Centre for Global Development
- 32 Bhattacharya, Amar, Meagan Dooley, Homi Kharas, Charlotte Taylor, and Nicholas Stern. 2022. Financing a big investment push in emerging markets and developing economies for sustainable, resilient and inclusive recovery and growth. London; Washington DC: Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science; Brookings Institution.
- 33 (Bhattacharya, et al. 2022) report that, as of 2018, private philanthropy accounted for ~\$70 billion in cross-border flows
- 34 Read Chapter II of Global Financial Stability Report, October 2022.
- 35 <u>Innovative Finance: Mobilizing Capital for Maximum Impact</u> talks about other bonds and private sector innovative financing which can also supplement public financing on the adaptation front.
- 36 <u>National Statement by Prime Minister Shri Narendra Modi at COP26</u> <u>Summit in Glasgow</u>
- 37 <u>India's Updated First Nationally Determined Contribution Under Paris</u>
 <u>Agreement</u>
- 38 Council agrees on the Carbon Border Adjustment Mechanism (CBAM) Consilium
- 39 A Tool for Designing Policy Packages To Achieve India's Climate Targets:

 Methods, Data, and Reference Scenario of the India Energy Policy
 Simulator | World Resources Institute
- 40 WRI India has a simulator that a user can employ to deep dive into different scenarios. This can be found at Energy Policy Simulator.
- 41 <u>Pathways for Deep Decarbonization: Aligning India's NDC Submission with its Net-Zero Ambition</u>. Also see (Narassimhan, Gopalakrishnan and Gallagher 2021).
- 42 Getting India to Net Zero
- 43 Net Zero Emissions by 2050 Scenario (NZE) Global Energy and Climate Model Analysis IEA

X. CONTRIBUTORS

Andreas Goldthau is Director of the Willy Brandt School of Public Policy and Franz Haniel Professor for Public Policy at the Faculty of Economics, Law and Social Sciences, University of Erfurt. He is also Research Group Leader at the Institute for Advanced Sustainability Studies. Prior, he served as Professor in International Relations at Royal Holloway College, University of London and as Professor at Central

European University's School of Public Policy.

Deepthi Swamy is Lead, Climate, World Resources Institute India. Her work is primarily focused on energy-economy modelling and policy analysis for supporting a clean and just energy transition for India, using a systems approach. She has over a decade of experience in energy and climate policy, and has worked on renewable energy potential assessments, electricity sector planning, development of tools

for long-term energy planning, and evaluation of policy and regulatory frameworks for achieving national wind energy targets. She previously worked as a research scientist with the Centre for Study of Science, Technology, and Policy (CSTEP) and a research associate with The Energy and Resources Institute (TERI).

Denis Schrey currently serves as Programme Director of the Multinational Development Policy Dialogue (MDPD) at the European Office of Konrad-Adenauer-Stiftung (KAS) in Brussels and as the Network Coordinator of the European Network of Political Foundations (ENOP). In this function he oversees projects on Democracy/Development, Security/ Multilateralism and Climate and Energy. Denis is a qualified

Development Economist and Political Scientist, Political Consultant and Project Manager with experience in managing complex development projects in Europe and Asia. He is specialised in advising on political party and parliamentary reform processes, decentralisation and media reforms, with a regional focus on SouthEast Asia. Between March 2016 and February 2019 he was based at KAS HQ in Berlin, where he held the position of Project Director of APRAN (Asia Pacific Research and Advice Network).

Hans Peter Lankes is a Visiting Professor in Practice at the LSE Grantham Research Institute, a Visiting Senior Fellow at the Overseas Development Institute (ODI) and a Senior Fellow at the LSE/Oxford International Growth Centre. He is a member of the G20 Panel on the Capital Adequacy Frameworks of the Multilateral Development Banks, an

Advisor to British International Investment and a member of the Investment Committee of ILX (an SDG impact fund). His research focuses on climate finance, development economics and sustainable growth, including recent reports for the G7 Presidency on designing a climate club, and reports for the World Economic Forum and for COP26 on mobilising policy and finance for climate and development.

Until early 2021, Hans Peter was the Vice President, Economics and Private Sector Development at the IFC/World Bank Group, having previously served in various roles on the management team of the EBRD and as Chief of the Trade Policy Division at the International Monetary Fund. Earlier in his career, Hans Peter had a track record in academia and policy consulting in Central America, West Africa and Southeast Asia.

Hans Peter obtained his PhD from Harvard University with a thesis on the political economy of hyperinflation, an MPA from Harvard Kennedy School, Diplom-Volkswirt from Albert-Ludwigs-Universität Freiburg and License en Sc. Economiques from Université de Grenoble.

Dr. Heiner von Lüpke is a senior researcher at the climate policy department of the German institute for economic research (DIW Berlin). Prior to joining DIW Berlin, he spent 3 years at UN-FAO headquarters working on forest and climate policies, 7.5 years with GIZ as climate policy advisor to the Indonesian government for UNFCCC COP 13, and national climate policy and finance topics. Upon return to Germany,

he spent 3 years advising the German government on international climate policy such as NDCs, coal finance phase out and strategies for climate and development support. He holds a B.Sc. and MSc in international forestry sciences, as well as Latin-American studies from Technical University of Dresden and a PhD in political sciences from Heidelberg University on the topic of cross-sectoral integration of climate policies in Mexico and Indonesia. His current research interests include interactions of international climate finance flows with national climate and development policies, as well as international climate cooperation in the context of climate clubs and alliances.

Jayant Sinha is a directly elected Member of the Indian Parliament, and Chairperson of the Standing Committee on Finance. Previously, he served as the Minister of State for Finance and Civil Aviation in the Government of India. Prior to joining public life, Mr. Sinha was a Partner at McKinsey & Company, Courage Capital, and Omidyar Network. He has an MBA with Distinction from the Harvard Business School, an

MS in Energy Management & Policy from the University of Pennsylvania, and a BTech with Distinction from IIT Delhi.

Karin Jancykova is a Programme Manager for Climate and Energy of the Multinational Development Policy Dialogue at the European Office of Konrad-Adenauer-Stiftung (KAS) in Brussels and Co-chair of the Working Group on Sustainable Development at the European Network of Political Foundations. Together with Ms Ritika, she coordinates the Global Climate Alliance Collaborative's work and meetings.

Karsten Neuhoff is Professor at the Institute of Economics and Business Law at Technical University Berlin and Head of the Climate Policy Department at DIW Berlin. His topic: How to design carbon pricing, power market design and further policies for an economically and socially successful transformation to climate neutrality? Based on independent scientific research he engages in mutual transfer between

science, politics and other stakeholders, for example in the Sustainable Finance Advisory Council of the German Federal Government. He leads extensive consulting projects for the German government and the EU Commission and has published 42 journal articles and 4 books. Karsten Neuhoff holds a Master in Physics from the University of Heidelberg and a PhD in Economics from the University of Cambridge.

Leonardo Garrido is a Senior Climate Economist. His work focuses on the development of science-based, integrated tools and methods at the intersection of climate, the environment and the socio-economy to support low carbon, sustainable policy making; building analytical and modelling capacity of technical, senior policy makers; and engaging with decision makers in order to advance climate, green

policies across countries. Leonardo's main research interests include the economics of climate change, and the modelling of interrelations of climate, environment and socio-economy.

Ritika Jajoo is an Analyst in the Konrad-Adenauer-Stiftung Multinational Development Policy Dialogue, and the Project Coordinator for the Collaborative. She was a Legislative Assistant to Member of Parliament (LAMP) Fellow for 2021-22. She holds a bachelor's degree in Political Science with Honours from Kirori Mal College, Delhi University.

Sangeeth Raja Selvaraju is a Research Associate in the Climate Policy Department at the German Institute for Economic Research (DIW) and works on international climate finance and cooperation with a focus on developing countries. He completed his master's degree in public policy from the Hertie School and has a bachelor's degree in economics and philosophy from Bennington College and LSE.

Ulka Kelkar is Director, Climate, World Resources Institute India. She is an economist with more than two decades' experience in climate policy. She studies the economic impacts of low-carbon development pathways for India and supports climate action in Indian cities and states. She previously worked as a consultant climate assessment specialist for the Asian Development Bank (ADB) and

research fellow with The Energy and Resources Institute (TERI).

Varun Agarwal is Senior Project Associate, Climate, World Resources Institute India where he contributes to the organisation's research on carbon markets, low-carbon development pathways, linkages between climate policy and sustainable development, and climate action in the corporate sector. He previously worked as an associate at the Confederation of Indian Industry, in the areas of greenhouse

gas inventory and reporting at the corporate and national level, corporate sustainability standards, and environmental policy.

(LAMP) Fellow.

Vedant Monger is a Consultant in the Climate Insights team at Shakti Foundation with training in economics and policy. His research interests span carbon pricing and climate finance, climate agreements and institutions, topics in law and economics related to climate such as electricity reform, and climate and macroeconomics. In his earlier role, he was a Legislative Assistant to a Member of the Indian Parliament

Concept and realisation

Multinational Development Policy Dialogue (MDPD) Konrad-Adenauer-Stiftung European Office Brussels Avenue de l'Yser / Ijserlaan 11 1040 Brussels www.kas.de

Editor

The-Write-Stuff G.E.M. Services Europe C/ La Mar 7, 2° piso, 03700 - DENIA (Alicante), Spain Registered in Spain: ESB72419740

License for digital publications for the text

Creative Commons - CC BY-SA 4.0

Design and Illustrations

Objectif, communication & services Avenue Paul Hymans 55, B1 - 1200 Bruxelles www.objectif-sprl.com

