PRICING CARBON IN LATIN AMERICA: THE CASE OF CHILE

Juan-Pablo Montero

Department of Economics and Center for Global Change PUC-Chile

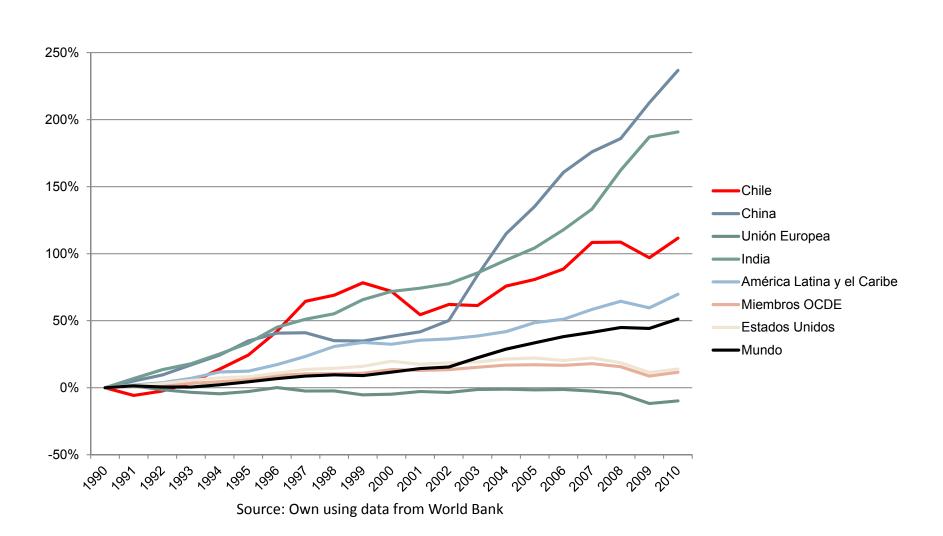
Intl. Workshop on Climate Change Economics and Finance Auditorio Itaú FGV, Sao Paulo, September 23-24, 2015

Outline

- 1. Some background information
- 2. Actions taken by the government so far
- 3. The recently approved CO2 tax: 5 US\$/ton; its political economy and its costs
- 4. How does Chile's CO2 tax compare to carbonpricing initiatives around the globe?
- 5. Moving forward: implementing cap-and-trade and linking to international markets
- 6. What to do with the transportation sector (my current research)?

I. Brackground information

Population 2013: 17 million


GDP 2013: 277 billion US\$

GDP per capita 2013: US\$ 15,800

CO2 in 2011: 80.1 million ton

and growing....(73.9 in 2009)

Growth rate of CO2 emissions

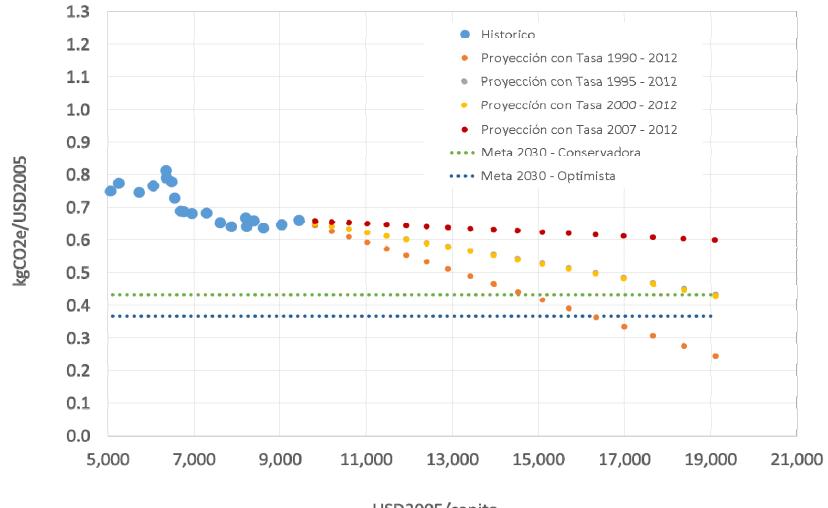
II. Chile's climate policies

- Mitigation proposals for COP 21-Paris
- 2. Promotion of renewable power sources
- 3. Substantial participation in CDM
- 4. Most important, CO2 tax

On the road to Paris

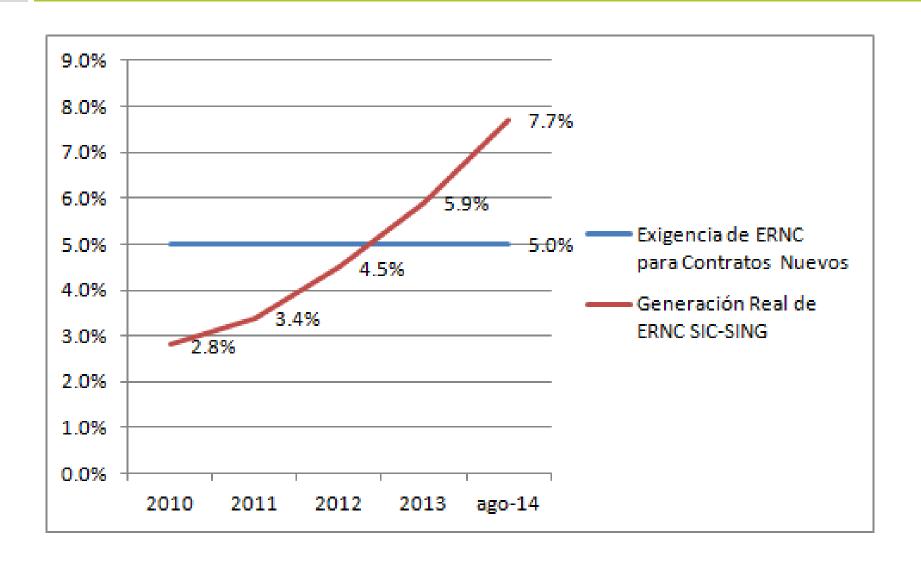
 Two options on the table: reductions in emissions intensity (CO2/GDP) using 2007 as baseline

Option	2025	2030
Α	30% - 35%	40% - 45%
В	25% - 30%	35% - 40%


How much reduction intensity at the annual level?

Option	2025	2030
A	1,47% - 1,68%	1,47% - 1,63%
В	1,25% - 1,47%	1,31% - 1,47%

Can be done?


7

- Simple exercise looking at historic emissions and GDP growth
- See next

USD2005/capita

Law 20.257 for the promotion of renewable

Intensive use of CDM (additionality an issue?)

10

Tipología	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	Total
Reforestation	1				1			1				3
Biomass		2	2		1	2		2	1	1		11
Fuel switching	1							1	1			3
Methane capture	3			10	3	3	2	2	1			24
Co-generación	1											1
Self-generation								2				2
Wind generation					1		1	5		11		18
Methane reduction										2		2
Biogas generation										2		2
Geo generation										1		1
Hydro generation	1	1	2	3	3	3		9	5	15		42
N2O					1			1	1			3
Management activities										11	1	12
Methane recovery			3	1			1					5
Fertilizer mangement									2			2
Solar								1		6		7
Transporte								1				1
Total per year	7	3	7	14	10	8	5	28	11	49	1	139

Chile ranks 6th in CDM credits

CDM Credits by country	Million Credits	% of total		
China	784.6	61.8%		
India	170.9	13.5%		
South Korea	107.1	8.4%		
Brazil	81.9	6.4%		
Mexico	20.3	1.6%		
Chile	13.9	1.1%		
Argentina	13.3	1.0%		
Egypt	10.0	0.8%		
Vietnam	8.0	0.6%		

Source: AND-Chile, may 2013; using information from CDM Pipeline, may 2013.

III. The 5 US\$/ton CO2 tax

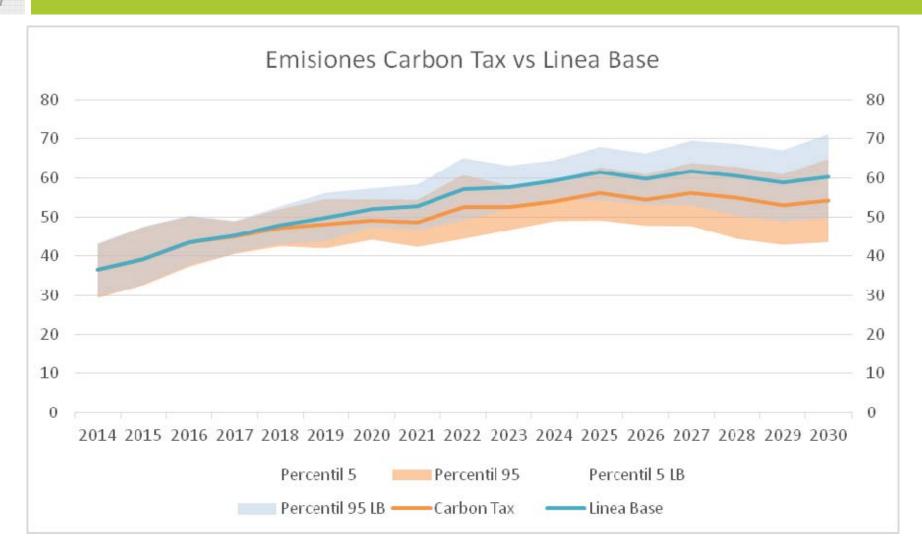
- what is it? what does it cover?
- established along with other (local) pollution taxes: PM2.5, NOx & SOx
- 3. its political economy
- its costs and benefits (and its impact on CO2 emissions)

What is the CO2 tax doing?

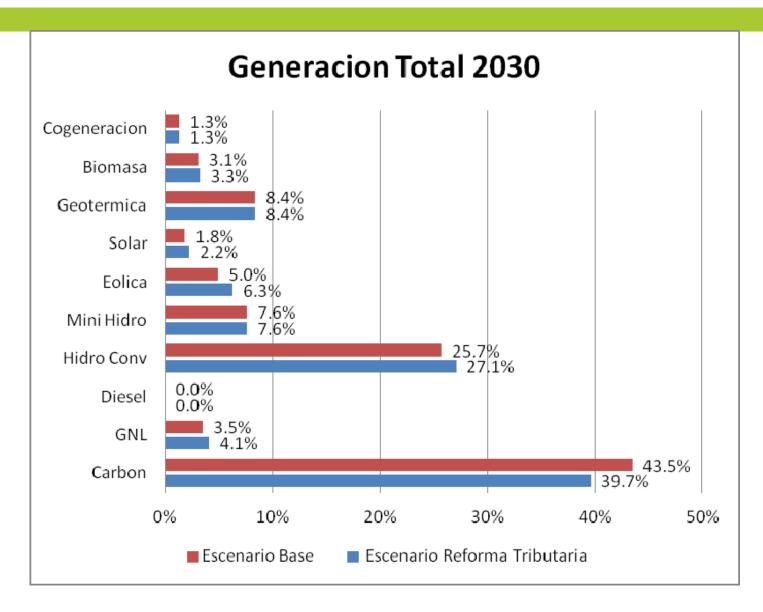
- Proposed in March 2014 by the new President and signed into law in September 2014
- It applies to power plants and large industrial facilities (greater than 50 MW) starting in 2017
- It covers roughly 55% of the country's CO2 emissions
 - 90% of CO2 from power plants (84 out of 154)
 - 70% of CO2 from industrial sources (233/6678???)
 - Transportation (≈30%) is not affected
- the law also considers taxes for three local pollutants (PM2.5, SOx, NOx) applied to the same sources

Political economy of Chile's carbón tax

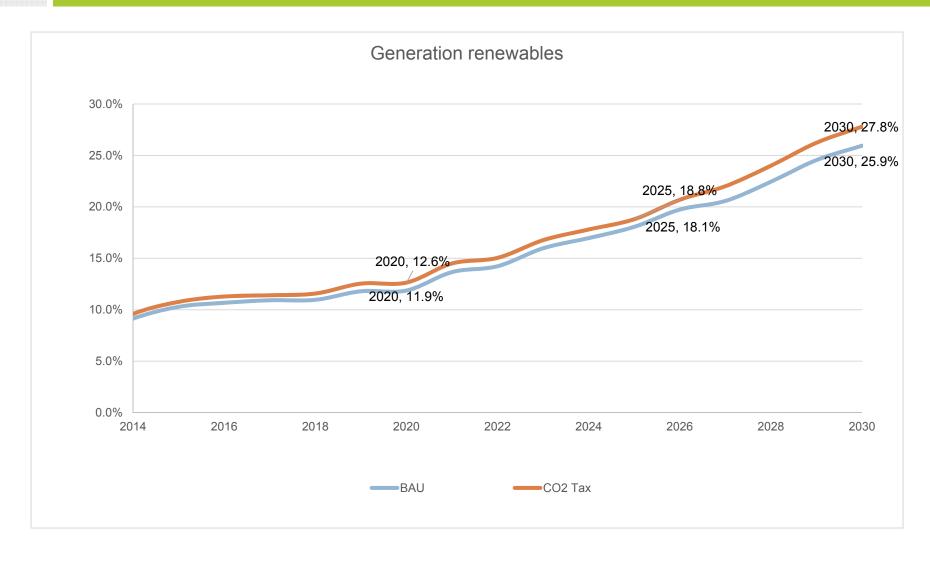
- the CO2 tax is expected to raise US\$ 425 million/year (roughly evenly split between industry and power sectors)
- (the other local taxes are expected (according to a CGC-UC calculation) to raise another US\$ 1192 million/year)
- All these taxes were NOT proposed and debated in isolation
- rather, were part of a comprehensive tax reform package (increasing corporate taxes mainly) aiming at collecting an additional 3% of GDP (US\$ 8 billion/year)
- Very unlikely these "green" taxes would have been pushed and approved in isolation
- (Mexico's CO2 tax of 1-3 US\$/ton, approved in Jan 2014, followed similar path, coverage smaller, 40%)


Political economy of Chile's green taxes., cont.

- Prices vs Quantities: the country was already seriously discussing the implementation of a comprehensive capand-trade system
- Tax system seemed easier to implement (specially if there are concern about market liquidity) plus they raise revenue
- more certainty about revenue collection (even if all permits are auctioned off, but what if adding a price floor? too complicated)
- monitoring and enforcement practically the same
- Issue of international competitiveness less relevant at these low prices (important reason for choosing a low price)


Costs and benefits of the CO2 tax (besides the extra revenues)

- Major benefit: help building the institutions that will be required as we engage in more ambitious mitigation efforts over the next decade
 - monitoring, compliance
 - bring reductions from transportation and forestry sectors with offsets (?)
- the cost for the power sector in terms of higher retail prices: 2% by 2030 (estimation CGC-UC)
- Impact on CO2 emissions and on renewables?


Evolution of CO2 emissions power sector: BAU v. 5 dollar tax

Power generation in 2030: BAU v. 5 dollar tax

Impact on renewables

2(

IV. Comparing to other carbon-pricing initiatives

- To cap-and-trade systems (EU ETS, New Zealand, RGGI, California-Quebec, China 7 cities, etc)
- 2. To other tax systems (Mexico, Sweden)

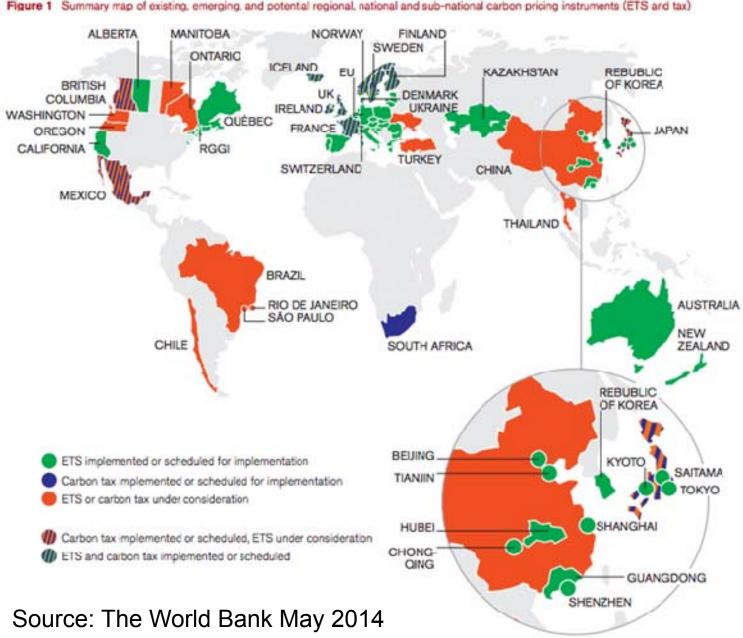
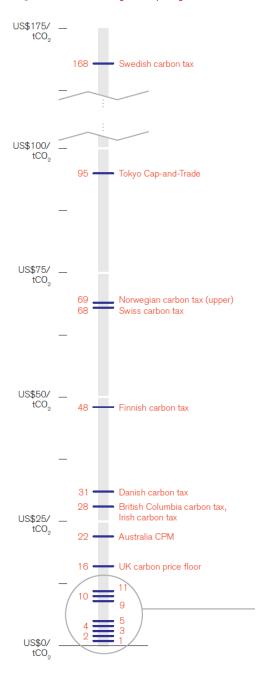
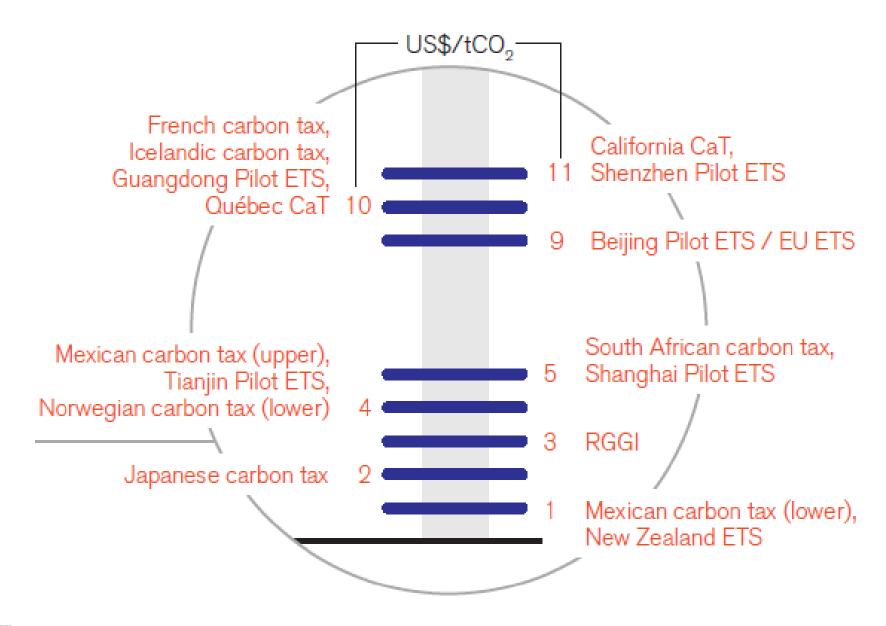




Figure 1 Summary map of existing, emerging, and potential regional, national and sub-national carbon pricing instruments (ETS and tax)

Source: The World Bank May 2014

Figure 2 Prices in existing carbon pricing schemes

Source: The World Bank, May 2014

V. Moving forward

- 1. Why is important to move to a country-wide CO2 cap-and-trade system?
- 2. Quantity limits at the country level; not CDM
- 3. Linking to international markets
- Chile has ample experience with markets of property rights for managing natural resources (particulates, water rights, fishing quotas)
- 5. Already complete report to the World Bank (lead by Suzi Kerr from Motu-New Zealand) on setting-up cap-and-trade in Chile

We need to move to quantity limits at the country level

- Negotiating prices vs negotiating quotas
- Quotas superior for many reasons (despite Weitzman 2014):
 - It is easier for a country to undo the (marginal) workings of a tax (with internal policies that are not visible)
 - easier to monitor emissions at the country level (GDP, fuel mix, etc); what about offset credits from abroad?
 - Linking easier among quantity-based regimes
 - How can a developing country sell credits in the international market when is using a country-wide tax?
 - It must necessarily have negotiated a quota limit
- Nevertheless, taxes are good to start with (Australia)

Chile's experience with quota markets

- Water markets; introduced in 1981
 - 100% "grandfathering"
 - quite successful in valleys in the central district; less so in northern and southern districts
- ITQ for fisheries introduced in 2001
 - came to replace the previous Olympic race that only set the total catch; large cost savings as a result
 - 100% grandfathering; a legal reform of January 2013 preserved ITQs
- Market for particulates in Santiago in 1992 (also NOx)
 - based on an executive order (didn't require Congress approval)
 - 100% grandfathering

VI. Transportation sector

- What to do with it? Offsets? Upstream regulation
- 2. Why not driving restrictions?
 - incentives for a faster fleet turnover
 - cheaper and more permanent than scrapping subsidies (or subsidies to low-emission vehicles)

Adopting a cleaner technology: The effect of driving restrictions on fleet turnover

Hernán Barahona Franciso Gallego Juan-Pablo Montero

Department of Economics PUC-Chile

University of Toronto September 21, 2015

driving restrictions are popular

- Driving restrictions —basically you cannot drive your car once a week— are increasingly popular for fighting congestion and (local) air pollution
- they come in different formats but all based on last digit of vehicles' license plates: some are permanent once-a-week restrictions, others work only in days of bad pollution or once a week but only during rush hours, others exempt cleaner cars from it, etc.
- why so popular? they are politically visible and relatively easy to enforce
- Cities that have or had in place driving restriction policies (in its different formats): Santiago (1986), Mexico-City (1989), São Paulo (1996), Bogotá (1998), Medellín (2005), San José (2005), Beijing (2008), Tianjin (2008), Quito (2010), Paris (March 2014)

Driving Restrictions

some unfortunate evidence on how these restrictions work

- A few papers looking at the Mexico-City restriction (Hoy-No-Circula) as implemented in 1989
 - Eskeland and Feyzioglu (WB Econ R, 1997): more cars on the road and higher gasoline consumption in the long run
 - Davis (JPE 2008): applying RDD to hourly pollution data found no effect in the short run; and also more cars in the long run
 - Gallego-Montero-Salas (JPubE 2013): looking at carbon monoxide during morning peak hours (90% comes from vehicles unlike other pollutants) found (i) a 10% reduction in the short run but a 13% increase in the long run (after a year) and (ii) great disparity in policy responses among income groups
- Also looking at the evolution of pollution data, Lin et al (2013) failed to find air quality improvements from restrictions elsewhere: Bogotá, São Paulo and Tianjin (they found some for Beijing)

this paper: driving restrictions may accelerate the introduction of cleaner cars

- there is an important long-run effect in some driving restrictions that has not been studied
- by only placing a restriction on old-polluting cars, they may help accelerate both the introduction of cleaner cars and the retirement of older cars
- the city of Santiago reformed its existing driving restriction policy in 1992 (Mexico-City in 1994) so that any new car was
 - required to be equipped with a catalytic converter (a device that reduces pollution considerably, specially lead)
 - and exempted from any driving restriction
- how did it work? not obvious for two reasons
 - there are two forces operating: some may bypass the restriction buying a new, cleaner car (sooner than otherwise), yet others may buy a second older car like in Hoy-No-Circula (which now can be even cheaper)
 local vs global emissions (CO vs CO2)

the Santiago driving restriction

- 1985: prohibition to the import of used cars into the country
- 1986: driving restriction is introduced in the city of Santiago; but only for days of unusually bad air quality
- 1990: the restriction becomes, for practical purposes, permanent from April to October; 20% of the fleet off the road during weekdays
- 1992: cars that passed a new environmental standard (catalytic converter) would get a green sticker
 - new cars bought in 1993 and after without the green sticker are not allowed to circulate in Santiago's Metropolitan Region and neighboring Regions V and VI (see map)
 - a car with a green sticker is exempt from any driving restriction

Santiago vs the rest of the country

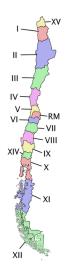


Table: Some statistics of Chile and Santiago

	Chile	RM	Santiago
Population	16,926,084	6,891,011	5,015,070
Monthly av. income	\$ 410	\$ 497	\$ 564
# of cars*	2,162,308	994,723	797,046
cars* p.p.	12.75%	14.44%	15.89%

(*) counting only particular light cars

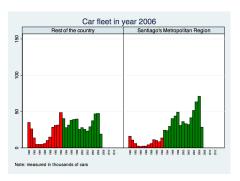

Figure: South America

Figure: Chilean Map

Evidence #1:

The vehicle fleet in Santiago is cleaner than in the rest of the country because of the driving restriction

Preliminary evidence: Santiago vs the rest of the country

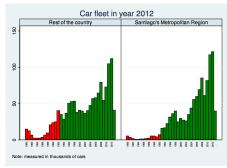


Figure: Fleet in 2006

Figure: Fleet in 2012

- compelling evidence that the fleet in Santiago is cleaner than in the rest of the country
- but how much is explained by income? (Santiago is richer)

Santiago vs the rest of the country "controlling" for income

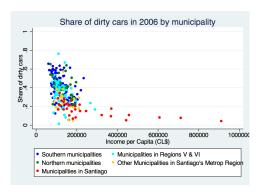


Figure: Red cars as function of income in 2006

 it seems that municipalities in Santiago (more than 30) have a smaller fraction of red cars (vintage 92 and older) in their fleets

controlling for income and used-car dynamics

- there may be different reasons behind the higher fleet turnover in Santiago
 - it could be the restriction policy
 - but also that a high turnover in high-income municipalities in Santiago results in a faster turnover in middle and low-income municipalities in the city (people get rid of a 92 car not because it is dirty but old)
- to test for this second possibility we look at the share of 92 and 93 cars, so let

$$92/93_{it} \equiv \frac{q_{1992}}{q_{1992} + q_{1993}}$$

be the 92/93 ratio in municipality i in sample year t

the 92/93 ratio: municipalities in Santiago vs the rest

results supporting the policy effect look stronger now

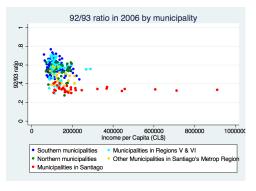


Figure: 92/93 ratio for sample 2006

92/93 ratio vs ratio for other contiguous vintages

• the "Santiago" effect only shows up for 92/93

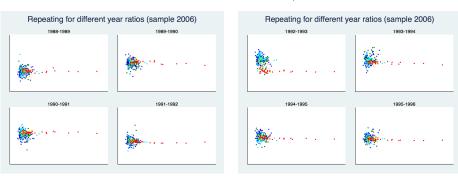


Figure: Vintages 88 to 92

Figure: Vintages 92 to 96

more formally...

Table: OLS results for different contiguous-year ratios

	(1) 88-89	(2) 91-92	92-93	(4) 93-94	(5) 95-96
Santiago	0.0166		-0.171***	-0.0183	-0.00646
Santiago		0.00166			
	(0.014)	(0.013)	(0.018)	(0.015)	(0.012)
Population	-0.000208	0.00235	-0.00743	-0.00174	0.000280
	(0.005)	(0.004)	(0.006)	(0.005)	(0.004)
Income per capita	-0.00145	-0.00522	-0.00655	-0.00655	-0.0100*
	(0.005)	(0.005)	(0.006)	(0.005)	(0.004)
Distance to Santiago	-0.0626*	-0.0138	0.141***	0.0184	0.00601
	(0.026)	(0.024)	(0.033)	(0.027)	(0.022)
(Distance to Santiago) ²	0.0285	0.0200	-0.0906***	0.00330	0.00805
	(0.020)	(0.018)	(0.025)	(0.020)	(0.017)
Far away regions	0.0974**	-0.0451	0.00516	0.135***	0.0760**
	(0.034)	(0.031)	(0.043)	(0.035)	(0.029)
Income dispersion	0.00262	-0.000899	0.00143	-0.00741	0.00369
	(0.006)	(0.005)	(0.007)	(0.006)	(0.005)
North	0.0240*	0.0398***	-0.0277	0.0346**	-0.0250*
	(0.012)	(0.011)	(0.015)	(0.012)	(0.010)
Urbanization	-0.0485**	-0.0288	-0.00372	-0.00707	0.0108
	(0.017)	(0.015)	(0.021)	(0.017)	(0.014)
Constant	0.372***	0.413***	0.542***	0.559***	0.444***
	(0.014)	(0.013)	(0.018)	(0.015)	(0.012)
Observations	266	266	266	266	266
R^2	0.165	0.085	0.520	0.336	0.189

Standard errors in parentheses

Distance to Santiago in hundreds of kilometers.

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Income per capita in hundreds of thousends of pesos. Population in hundreds of thousends of persons.

Evidence #2:

The driving restriction has created a price differential of 20% for otherwise similar cars

(this is also indication that the restriction is well enforced)

some evidence from prices of used cars in Chile

• there is also some evidence of a discontinuity in used car prices between vintages 1992 and 1993

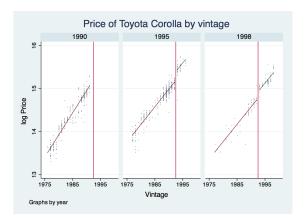


Figure: Price of used car Toyota Corolla by vintage

some evidence from prices of used cars in Chile

• running the following OLS regression we find that catalytic converter cars are on average between 15% and 20% more expensive.

$$p_{i\tau} = \alpha \tau + \beta Post_{\tau}^{1992} + \varepsilon_{i\tau}$$

	(1991)	(1995)	(1997)			
Panel A: Linear control						
Vintage	-0.110***	-0.0843***	-0.0834***			
	(0.002)	(0.002)	(0.002)			
Post 1992		0.243*** (0.028)	0.175*** (0.022)			
Observations	259	222	194			
R^2	0.953	0.947	0.944			
Panel B: RD						
Post 1992		0.331***	0.251***			
		(0.074)	(0.067)			

Standard errors in parentheses

^{*} *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001

some evidence from prices of used cars in Chile

- for Honda Accord, for example, we can also find some cars that reported having a catalytic converter prior to 1993.
- running a regression where the independant variable is a dummy when
 a car reported to have a catalytic converter for different car vintages
 we found a signifant difference in prices only for cars made before
 1993.

	(1991)	(1992)	(1993)	(1994)
Catalytic	0.223***	0.189***	0.0206	-0.00487
	(0.059)	(0.040)	(0.036)	(0.026)
Constant	15.60***	15.68***	15.96***	16.40***
	(0.031)	(0.026)	(0.023)	(0.009)
Observations	47	53	58	49
R^2	0.245	0.309	0.006	0.001

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Evidence #3:

The clean-car exemption has eliminated the incentives to bypass the restriction with oldhigh emitting cars

about bypassing the policy buying a second car

 using a household-level dataset we can understand whether in Santiago it is more likely to have more than one car per household.

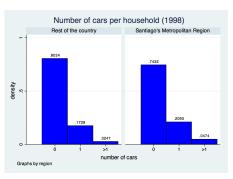


Figure: Number of cars (1998)

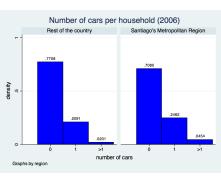


Figure: Number of cars (2006)

about bypassing the policy buying a second car

• controlling for different household's characteristics we calculate the effect of living in Santiago on having more than one car.

	(1998)			(2006)			
Panel A: marginal e	ffects on pro	bability of ha	ving two cars	condition	al on having	at least one	
OLS		0.0018		0.00999			
(0.006)				(0.0144)			
probit	-0.00076			0.0031			
	(0.001)			(0.0107)			
Panel B: marginal e	Panel B: marginal effects on probability of having an extra car						
	$\frac{\delta P[y=0]}{\delta y}$	$\frac{\delta P[y=1]}{\delta y}$	$\frac{\delta P[y \ge 2]}{\delta y}$	$\frac{\delta P[y=0]}{\delta x}$	$\frac{\delta P[y=1]}{\delta x}$	$\frac{\delta P[y \ge 2]}{\delta x}$	
ordered logit	0.0279***	-0.0258***		0.0206*	-0.0192*	-0.0014*	
	(0.01)	(0.009)	(0.0007)	(0.011)	(0.0104)	(0.0007)	
ordered probit	0.0318***	-0.0299***	-0.002***	0.0212*	-0.01998*	-0.00126*	
	(0.01)	(.0103)	(0.0007)	(0.012)	(0.0112)	(0.00067)	
Panel C: marginal e	ffects on hav	ing an extra	car using cou	nt data m	odels		
poisson		-0.0185***			-0.0181***		
		(0.0058)			(0.0065)		
hurdle poisson-logit		0.062			-0.01216		
	(0.081)			(0.0968)			

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001