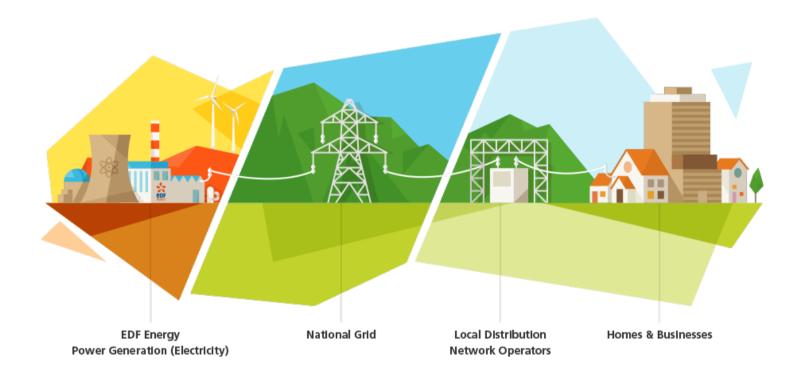
PHOTOVOLTAIC MICRO GENERATION INCENTIVE POLICIES

Joana Resende, Thereza Aquino



Outline of the Presentation

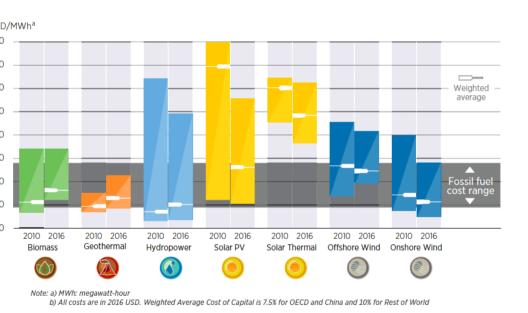
- 1. Introduction
- 2. Photovoltaic Micro Generation Incentive Policies
- 3. Regulatory Challenges
- 4. International Experiences
- 5. Conclusions

Introduction Going from a unidirectional value chain....

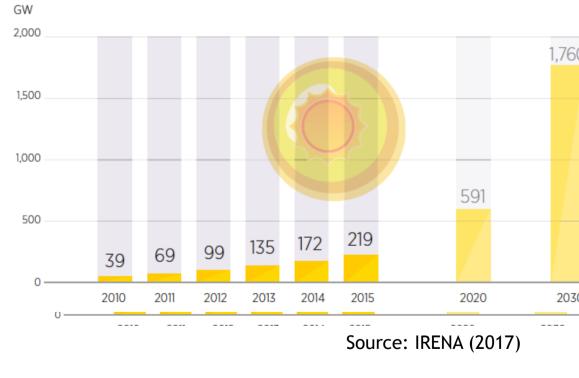
Source: EDF

Introduction

... to a smart grid based on Distributed Energy Resources



Introduction

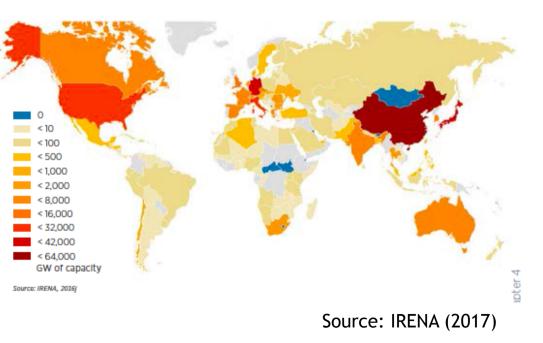

PV Solar: recent developments and trends

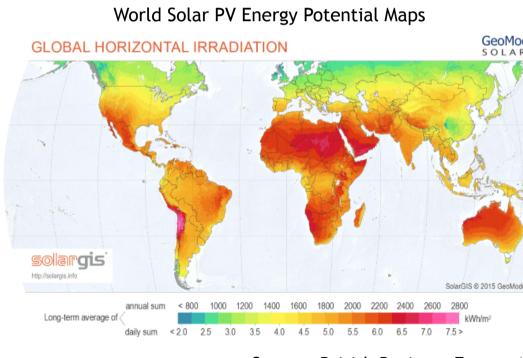
Economic profitability of solar PV is growing considerably:

LCOE are going down (and further reductions are expected – scale, scope and learning economies).

zed cost of electricity: utility-scale power (ranges & averages)

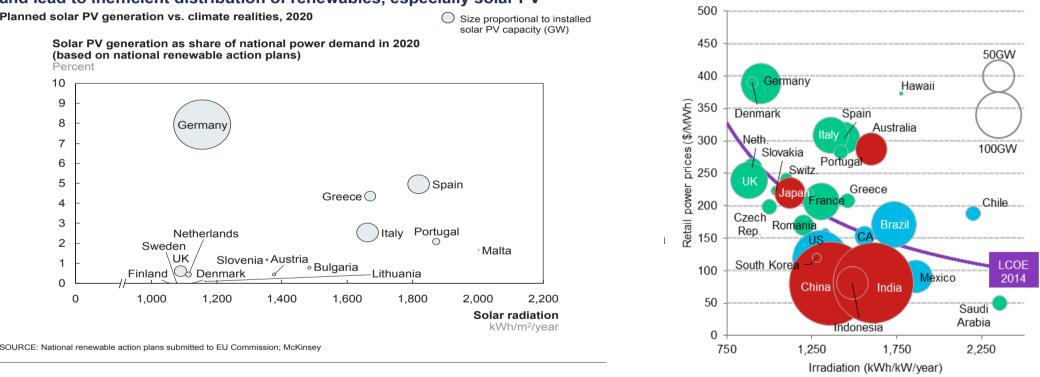
PV Solar global installed capacity (historical & projecti


Source: IRENA (2017)


Introduction

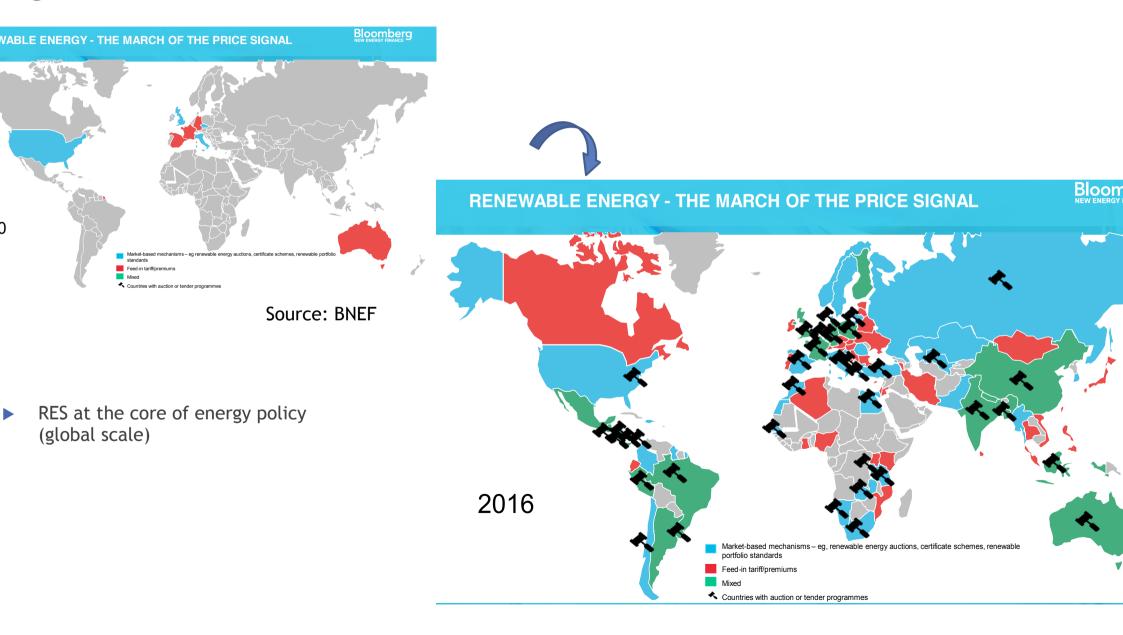
PV Solar: recent developments and trends

- Despite the PV solar considerable growth, there is a large asymmetry on the distribution of PV solar capacity, worldwide.
- Economic efficiency issues Countries with greater PV solar capacity are not necessarily the ones with more potential (e.g. Brazil and Portugal).

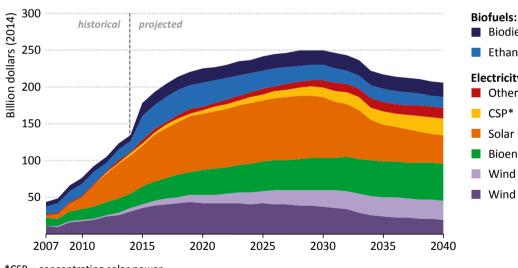

Cumulative installed PV solar capacity by country (2015)

Source: British Business Energy (

Investment determinants Solar PV

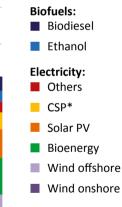


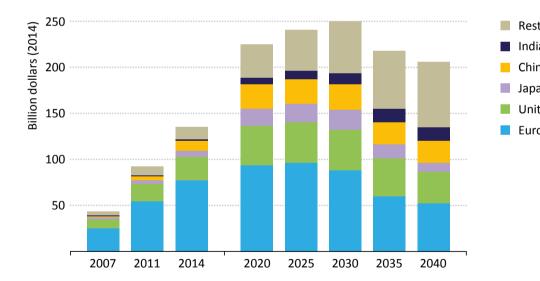
Current national renewable action plans neglect climate realities and lead to inefficient distribution of renewables, especially solar PV


Source: McKinsey

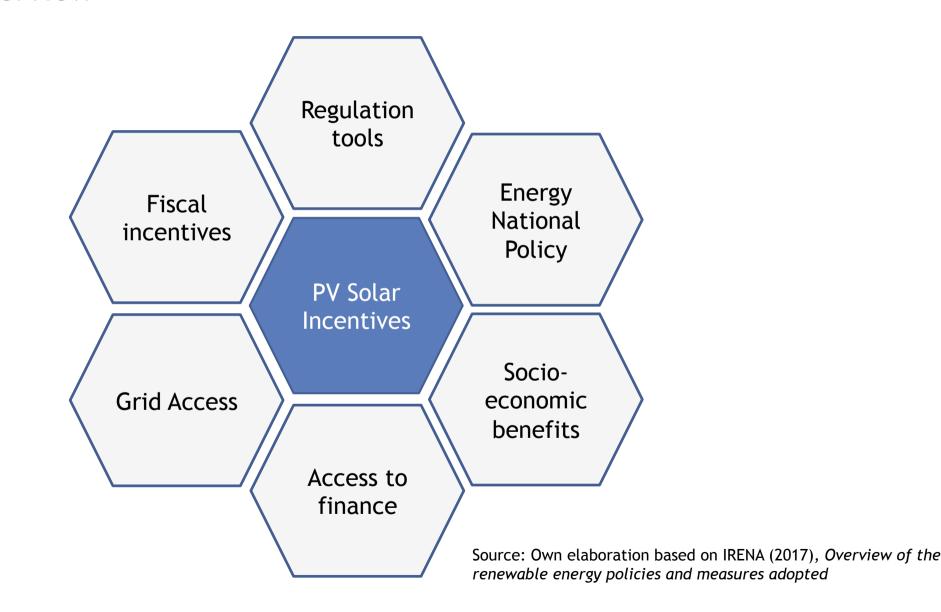
Source: BNEF

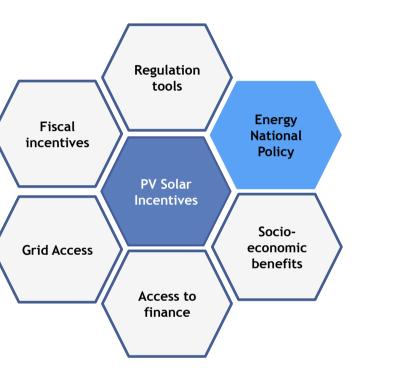
Investment determinants: natural conditions, technical issues intermittency and DG integration), financial-economic considerations, environmental issues, policy and regulatory framework...


- Solar PV at the heart of RES Incentive Policies
- Most prominent players: EU; US (?); China; India;


Subsidies by technology (New Policies Scenario)

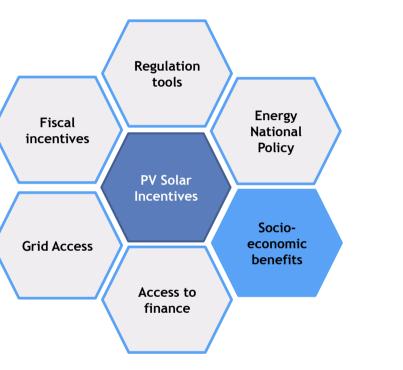
*CSP = concentrating solar power.

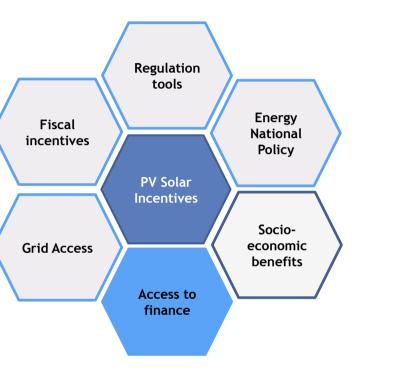

Source: WEO (2015), IEA



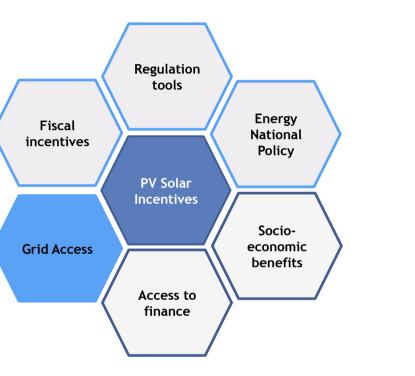
Subsidies by region (New Policies Scenario)

Source: WEO (2015), IEA

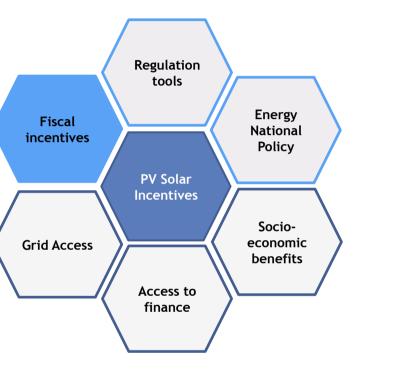



National Policy

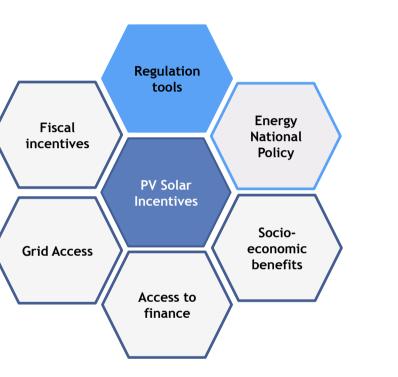
Macro-level incentives (supply-side)


- Ex. 1: RES national targets (Energy Policy)
- Ex. 2: Solar PV national targets (Energy Policy)
- Ex. 3 Technology specific Programs (Energy & Industrial Policy)

- Socio-economic benefits
 - Local-content requirements
 - Human resources qualification programs
 - RES rural access programs/ energy poverty programs
 - Social requirements



- Access to Finance
 - Dedicated funds
 - Eligible funds
 - ► Guarantees
 - Pre-investment support
 - Direct funding
 - Currency hedging

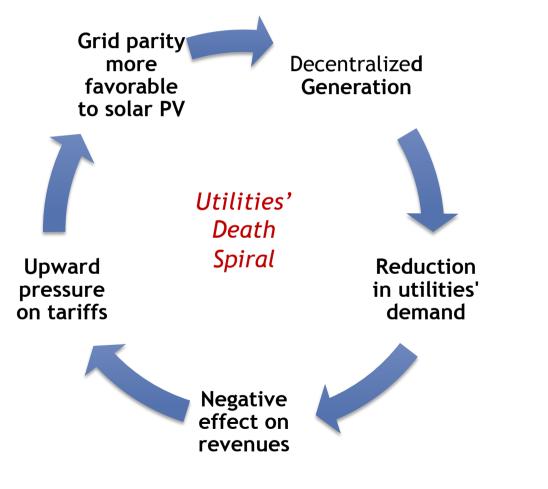

Grid Access

- Transmission discount
- Priority/ Dedicated transmission
- Preferential dispatch...

Fiscal Incentives

- Tax exemption (E.g. VAT/ income tax; local taxes)
- Carbon tax
- Accelerated depreciation
- Subsidies (e.g. Lump-sum subsidy or other tax benefits

Regulation Tools

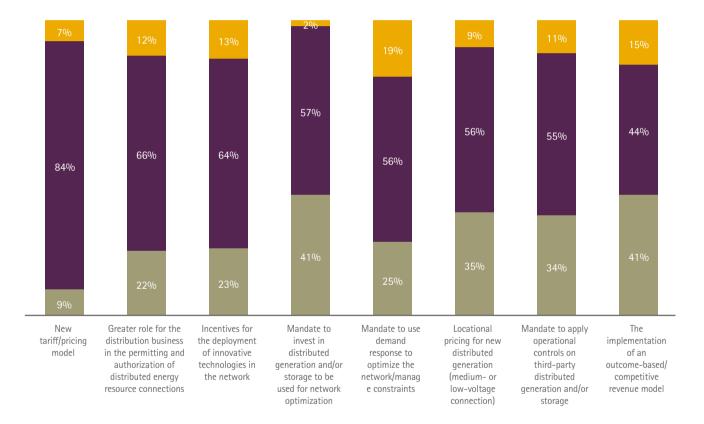

- Supply & Demand-side mechanisms
- Conventional and new tools (price mechanisms, mandate and licensing, certification systems)
 - Remuneration of energy surplus: Net metering; Net billing; Feed-in Tariffs; Feed-in Premium,...
 - Certificate system (QoS)
 - Licensing of new agents
 - Mandates to system operators...

► TRADE-OFF

Utilities' financial stability versus solar PV incentive

Regulatory challenges Balancing Solar PV incentives & Utilities financial viability

Decentralized PV Solar may threaten the utilities' conventional business model - "Death spira



YET...

- Utilities' activity is increasingly challenging
 - Huge investment needs
 - Integration of DG production in the grid
 - Uncertain decentralized production & intermittent RES
 - Coordination among many heterogeneous age
 - ► Grids' reliability & resilience
 - Facilitate coordination among many new heterogeneous problems

Regulatory challenges Balancing Solar PV incentives & Utilities financial viability

Necessary regulatory challenges in the next 10 years according to utilities' managers:

Utilities' major concern in the short-run - Tariff & pricing tools

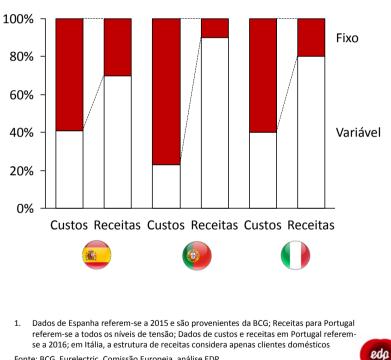
- 1. Re-designing conventional tools
- 2. New PV solar specific remuneration mechanisms

No Yes Already in place

Base: All respondents.

Source: Accenture's Digitally Enabled Grid research program, 2016 executive survey.

Source: Accenture (2016)


Regulatory challenges

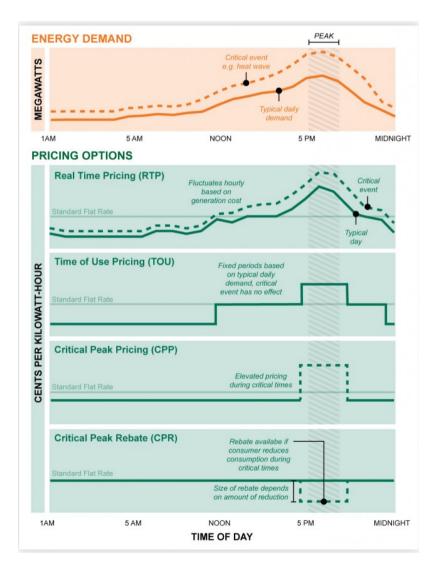
Redesigning conventional tools: tariff structure

- 1. Tariff structure
 - Towards non-linear pricing schemes:
 - Change the current (mostly) volumetric system
 - Cost-reflective system (that accounts for the different costs imposed on the network by different profiles of users)

Cost and Revenue structure in the Power Sector

Estrutura de custos e receitas do setor¹ % dos M€

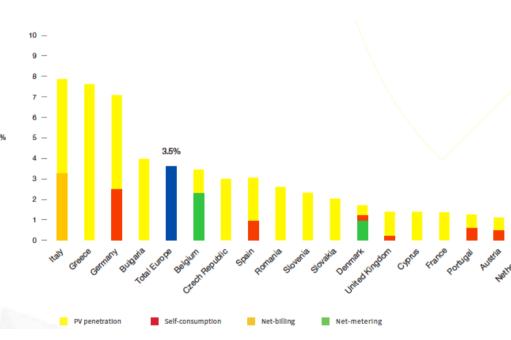
Fonte: BCG, Eurelectric, Comissão Europeia, análise EDP DPE - Direção de Planeamento Energético


Regulatory challenges

Redesigning conventional tools: tariff structure

- 1. Tariff structure
 - Dynamic tariffs
 - Critical peak pricing
 - Critical peak rebate
 - ▶ Real time pricing....

- Cost-effectiveness
- Complexity of the tariff design process
- Sophisticated metering/ communication systems
- Sophisticated and Tech-savvy consumers
- Social impact

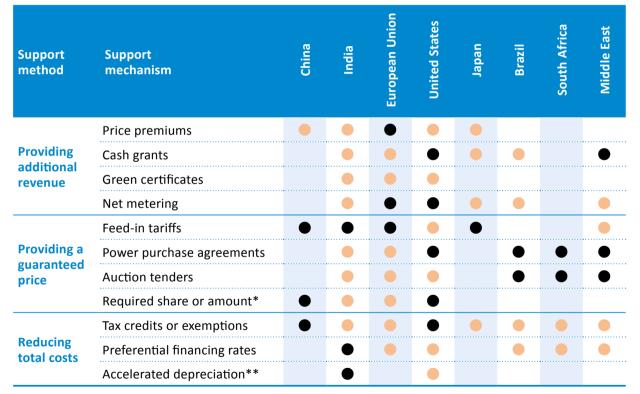


Source: Environmental Defense Fund (blog)

Regulatory challenges

Solar PV remuneration mechanisms

- 2. Alternative mechanisms to incentivize PV solar investment
 - Feed-in tariffs/ Feed-in-Premium
 - High-remuneration scheme
 - No uncertainty low risk
 - Market signals? Investment rationale? Cost-effectiveness
 - Net metering (Brazilian & USA systems)
 - Grid acts as a cheap battery (very important for non-dispatchable energy sources)
 - Investment incentives coupled with consumption needs
 - No effective signals to reflect the grid congestion
 - Net-billing
 - Market -price coordination issues?
 - Administrative price Avoid cost price? How to compute?



European PV Solar production and self-consumption in 20

Source: Solar Power Europe

ternational Experiences comparative analysis

Main support mechanisms for RES in the power sector

Solar PV:

- ► FIT
 - Net metering

* Policies may specify a required share (e.g. renewables in total generation) or minimum amount of installed capacity or generation. **Accelerated depreciation lowers total discounted costs by delaying the tax burden.

Note: ● = primary driver of renewables deployment; ● = secondary driver of renewables deployment.

Sources: IEA/IRENA Joint Policies and Measures database; IEA analysis.

Source: WEO (2015), IEA

International Experiences A comparative analysis

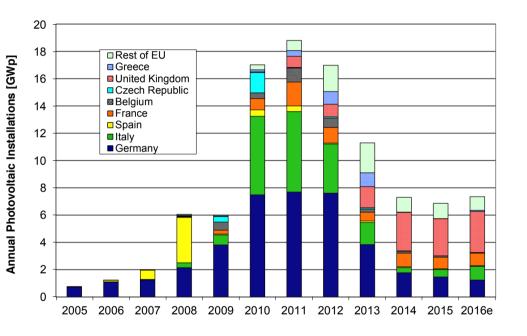
Country	Policy / Regulator y Target	Supply Side Drivers	Demand Side Drivers	Fiscal Incentives	Remarks		Country	Policy / Regulator y Target		Demand Side Drivers	Fiscal Incentives	R	
Germany	Yes	Feed-in tariff; Competitive bidding	Mandatory Capital Grid parity interconnection subsidy achieved, capital subsidy now provided for		United Kingdom	Yes	Feed-in tariff	Net metering; Renewable Obligation (RO)	Capital subsidy				
	storage.	_	Australia	Yes	Feed-in tariff	Net metering	Capital subsidy						
China	Yes	Feed-in tariff;		Capital						Subsidy			
		Competitive bidding		subsidy			India	Yes	Feed-in tariff;	Renewable Portfolio	Capital subsidy;	C	
Japan	Yes	Feed-in tariff	Net metering	Capital subsidy	Shifted from net to gross metering in 2009.	net to gross metering in				Competitive bidding	Obligation (RPO) Renewable Energy Credits (REC)		ta pi in ra
Italy	Yes	Feed-in tariff				-					Tax holidays; Priority	F	
United States	Yes	Investment tax credit (ITC)	Renewable Portfolio Standards (RPS) Net metering	Capital subsidy; ;Tax credits	A few states have gross metering in place	-					Sector Lending; Concessional Duties		
France	Yes	Feed-in tariff				-							
Spain	Yes	Feed-in tariff		Capital subsidy	New projects not eligible for FiT from 2012,	-							
								Source:	World Energ	gy Council (2016)		

International Experiences A comparative analysis

Self-consumption schemes

Member State	Remuneration for self-consumed or surplus electricity sold to the grid	Grid and system cost contribution			
Germany	< 90% production: applicable FIT or FIP rate > 90% production, either: a) average spot market price for solar energy (4-5 €ct/kWh) b) income from electricity sale (market or PPA) plus management premium of 1.2 €ct/kWh (decreasing to 0.7 €ct /kWh by 2015) PV system > 100 kWp (from 2016): market price	Before 01/08/2014 : exemptedAfter 01/08/2014 : exempted if < 10 kWp and < 10			
Italy	<20 MWe: private purchase agreement (PPA)	 < 20kW, exempted from grid and system costs 20-200kW partially exempted >200kW exempted only from system costs 			
Portugal	Average Iberian electricity market price minus 10%	If SC systems capacity <1% of total power capacity (TPC): SC exempted >1% and <3%, SC pays 30% grid fees, >3%, SC pays 50% grid fees			
Spain	Up to 100 kWp, regulation still to be adopted				
United Kingdom	PV and wind systems < 50 kWp: generation tariff + export premium of 4.77p £/kWh for up to 50% of excess power fed into the grid > 50 kWp and < 5 MWp.: Feed-in-tariff Source: European Commission (2015), Best prace	Exempted tices on Renewable Energy Self-consum			

Regulatory challenges Redesigning *old* tools and creating *new* ones


Net Metering Systems

Member State	Eligibility requirements	Netting period Electricity compensation		Capacity cap
Cyprus	Household and municipal PV systems < 3 kW	Yearly	Retail priceSubsidy of 900 Euro/kW for vulnerable consumers	10 MW per ye
Denmark	Non-commercial RES systems <6 kW	Hourly	Retail price	N/A
Greece	PV systems <20 kWp	Yearly	Retail price	N/A
Italy	RES systems: <200kW (after 31/12/2007) <500kW (after 1/01/2015)	Yearly	Net-billing system: remuneration based on time-of-use price	N/A
Poland	RES systems <40kW	Half- yearly	 < 10 kW : Feed-in tariffs (15 years): ~ €0.18 per kWh per below 3 kW; €0.11 per kWh for below 10 kW projects. > 10 kW and < 40 kW: 100% of the average sales price of electric energy on the competitive market in the preceding quarter 	$ \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{M} \mathbf{T} \mathbf{n} \mathbf{r}$
Sweden	RES systems connection size <100A	Yearly	Tax reduction: 0,60 SEK (~6 €cent) per kWh of RES reduction, but at least an equal amount of electricity should be bought from the grid. Tax reduction for delivery up to 30 MWh/y	For up to 3000 kWh, or 18000 SEK per year

Source: European Commission (2015), Best practices on Renewable Energy Self-consumption

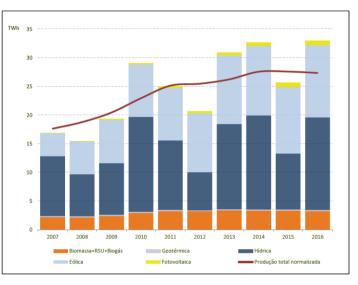
A comparative analysis: the European Case

Annual installations in EU and candidate countries

Source: European Commission (2016)

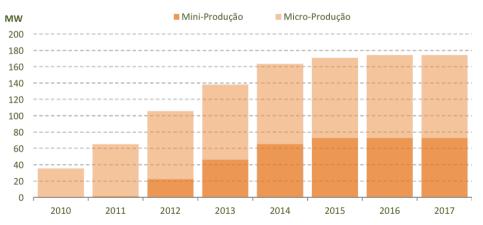
- In 2011, there is a peak in new installations
- Support schemes not always appropriate:

"Some Member States had introduced support schemes where not designed to react fast enough to the very rapid growing market and this led to unsustainable local market growth rates. To counteract this, <u>unpredictable and freq</u> <u>changes in the support schemes</u>, as well as legal requirements, led to installation peaks before the announ deadlines and <u>high uncertainty for potential investors</u>. A number of retroactive changes have further decreased investment confidence."

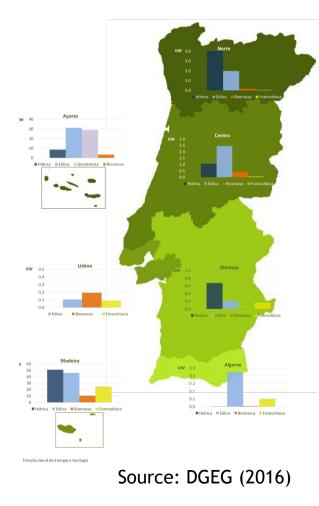

Source: European Commission (2016)

A comparative analysis: the European Case

- European Commission (2015) Recommendations:
 - Preference for self-consumption schemes over net-metering mechanisms
 - Limit net-metering to phase-in periods, allowing for regular revisions
 - Avoidance of retrospective changes in project's return and risks
 - > Phasing in of short-term market exposure by valuing surplus at wholesale electricity price
 - Monitor market developments in order to assure cost-effectiveness and avoid overcompensation (and cross subsidization)


A comparative analysis: the Portuguese Case

enewable Energy Production in Portugal



Source: DGEG (2016)

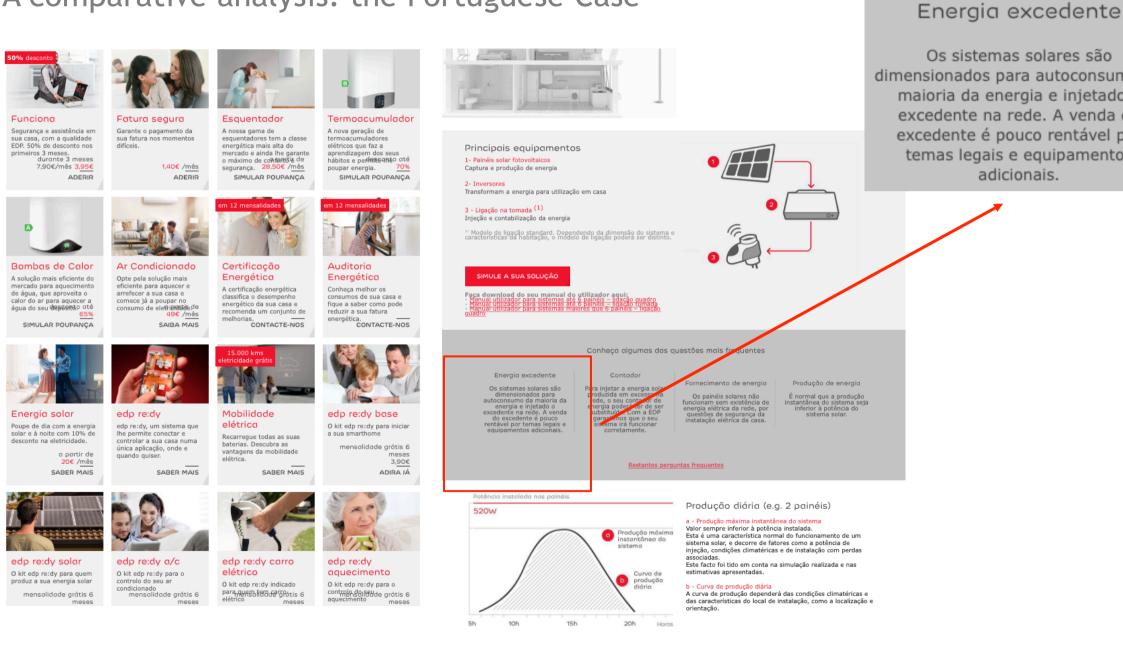
Mini and Micro generation

Installed capacity (per RES)

Source: DGEG (2016)

A comparative analysis: the Portuguese Case

 Utility-scale projects (e.g Amareleja plant)


- 2015 Installation of approx. 3500 selfconsumption generation units
- 2016 Installation of 6.067 self-consumption generation units
- Cumulative capacity 50.393 kW

"Portugal vai ter a maior central solar da Europa sem tarifa subsidiada

A nova central solar vai ficar localizada em Alcoutim, no Algarve."

in Jornal de Negócios, Feb. 2017 (200 million Euros investment (Chinese investment) - Installed capacity 221 MW

A comparative analysis: the Portuguese Case

A comparative analysis: the Portuguese Case

	UPAC (Self consum	nption)	UPP (Small decentralized producers)		
Production activity	instantaneous surplus m	d for self-consumption. Energy ay be injected to the grid and sold (CUR) if power <1MW (otherwise	All the energy is injected in the grid but product indexed to the electricity consumption of the associated consumption installation (annual production <2x installation consumption)		
Remuneration scheme & System Compensation		Fórmula de remuneração do excedente injetado na RESP: R _{UPAC,m} = E _{fornecida, m} x OMIE _m x 0,9 ated power> 1% and <3% of installe "Custos de Interesse Económico	Auction system (bidders offer discounts wrt the reference tariffs, administratively defined)- 15 yea contracts E.g catgory I the reference tariff is 95 Euros/MW (100 Euros for category II and 105 Euros for Cargor		
Registration & Power limits	Power<200W – no register communication only (sin (licensing requirements) Mandatory metering (ex	nplified registration); >1MW ;	Power <min [contracted="" consumption<br="" of="" power="" the="">installation, 250 kW] - quota 20 MW; Registration 8 Certification); Mandatory metering</min>		

Conclusions

Solar PV has extensively grown in recent years and it is expected to continue to grow in the future

- New electricity paradigm: more sustainable, more decentralized, storage, demand-side response, electric mobility, ...
- ▶ Utility-scale projects & Mini and Micro-generation projects growing side-by-side

Solar PV Micro-generation incentives are key to phase in DG

- In some countries (e.g. Portugal), investment incentives have slowed down in recent years, despite the natural potential...
- Business model innovation is needed in order improve the expected returns of investments in this field (both for new players and conventional utilities)
 - Multi-disciplinary approach to build new service-based products
 - Attractive financing schemes
 - Solar Community models
- Regulatory innovation is key to allow a smooth transition to the new electricity paradigm.

PHOTOVOLTAIC MICRO GENERATION INCENTIVE POLICIES

THANK YOU!!! OBRIGADA!!!!

jresende@fep.up.pt

Centro de Economia e Finanças da UP Center for Economics and Finance at UP

