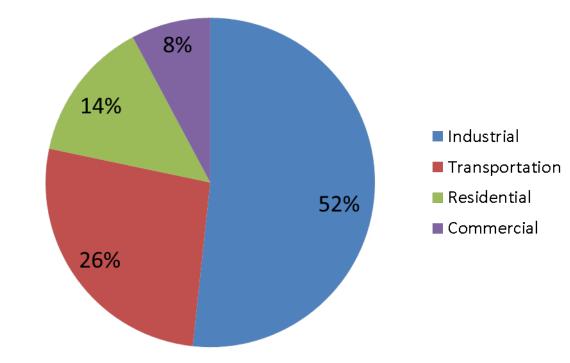


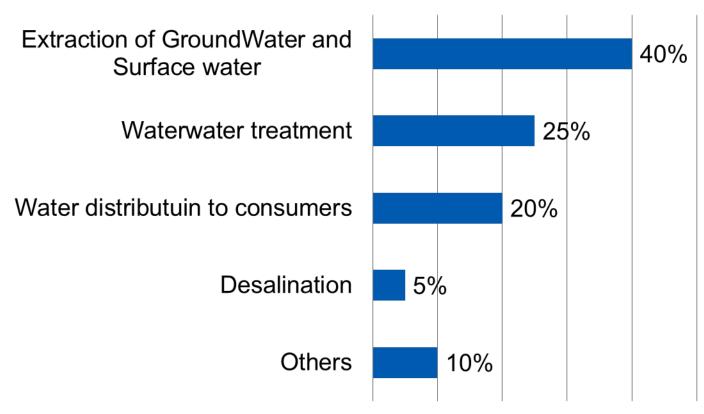
6ta Conferencia Latino-Alemana de Energía

Panel 3
11 y 12 de Septiembre del 2018,
Ciudad de México
Francisco Mendoza


- 1. Aspectos Generales Agua y Energía a Nivel Mundial
- 2. Aspectos Generales del Agua en México
- 3. Optimo Uso de la Energía en el Sector Agua
- 4. Ejemplos

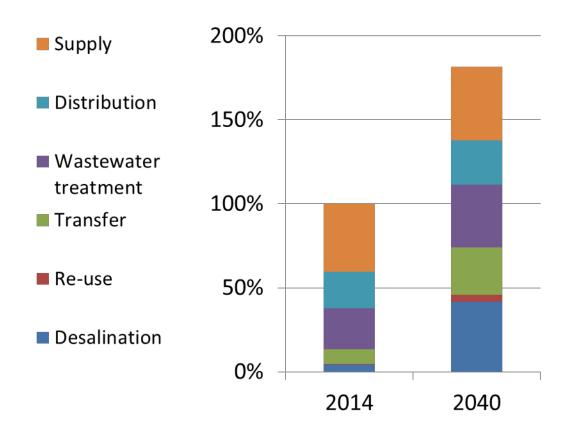
- 1. Aspectos Generales Agua y Energía a Nivel Mundial
- 2. Aspectos Generales del Agua en México
- 3. Optimo Uso de la Energía en el Sector Agua
- 4. Ejemplos

Consumo de energía a nivel mundial Agua y Saneamiento


Data Source: EIA Data (2012)

- 4% del consumo total mundial de energia en el 2014 fue para el sector de agua y saneamiento (IEA,2016)
- •La cadena de producción y suministro de alimentos representa aproximadamente el 30% del consumo total mundial de energía (FAO, 2011b)

El Sector de Agua consumió 4% del consumo total mundial de energía en el 2014*


Consumo de Energia 2014

^{*} Equivalente al consumo total de energía anual de Australia, Source: Adapted from IEA 2016 water energy Nexus

El uso mundial de energía en el Sector Agua se estima incrementará en un 80% al 2040

- el ratio de crecimiento del consumo total de agua se estima en 20% al 2040
- Las principales volúmenes de explotación de las fuentes de agua son;
- 70% para agricultura
- 13% para el uso municipal, se estima se incrementara al 17% en el 2040

Efectos Medio Ambientales y Sociales

• Cambio climático; Mayor presencia de huracanes, amplios periodos de sequias, etc.

- 1. Aspectos Generales Agua y Energía a Nivel Mundial
- 2. Aspectos Generales del Agua en México
- 3. Optimo Uso de la Energía en el Sector Agua
- 4. Ejemplos

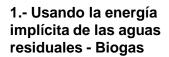
México – Aspectos Generales del Agua

- México cuenta con 471.5 mil millones m3 de agua dulce disponible por año, lo cual lo ubica en un país con baja disponibilidad de agua.
- 38,9% de las fuentes de agua en México proviene de acuíferos (653), muchos de ellos en condiciones de <u>sobreexplotación</u>, o en condiciones de incrustación marina (Agua.org.mx)
- La demanda de agua ha incrementado de manera importante:

```
en 1955 cada mexicano consumía un promedio de 40 l/d en 2012 el consumo aumento a 280 l/d por persona. (Aqua.org.mx )
```

 El promedio de pérdida de agua en la distribución México es de aproximadamente 3 veces mayor al promedio de la OECD

Tuxtla Gutiérrez, superó el 60%, San Luis Potosí con 50%; Chihuahua y la Ciudad de México con 40% (Water Governance in Cities, OCDE)



- 1. Aspectos Generales Agua y Energía a Nivel Mundial
- 2. Aspectos Generales del Agua en México
- 3. Optimo Uso de la Energía en el Sector Agua
- 4. Ejemplos

Visión

Optimo uso de energía en el sector agua

Potencial de más del 55% de la energía requerida para el tratamiento de aguas residuales municipales (energía renovable)

2.- Re-adecuando infraestructura de agua y energía

- >utilizar residuos para generar energía,
- >reducir los subproductos,
- >minimizar los costos de transporte, reducir los requisitos de energía y agua,
- usar el tratamiento y almacenamiento de agua como un mecanismo de almacenamiento de energía
- usar el sector de aguas residuales para respaldar la respuesta de la demanda en el sector energético

3.- Ahorro agua y de energía

- »Mejora de la eficiencia energética en los procesos del agua y su distribución
- »Minimizar las perdidas de Agua
- Definir una política publica considerando ; objetivos de eficiencia, demanda de agua, etc.

- 1. Aspectos Generales Agua y Energía a Nivel Mundial
- 2. Aspectos Generales del Agua en México
- 3. Optimo Uso de la Energía en el Sector Agua
- 4. Ejemplos

La energía implícita de las aguas residuales

- Biogas-

PTAR Managua, Nicaragua (2003)*

Objetivo del proyecto

Saneamiento del Lago de Managua

(en operación desde Diciembre 2009)

Capacidades de tratamiento

PTAR: Qmed: 2,2 m³/s, Qmax 3,5 m³/s (Población equivalente de 1,4 mill. hab al 2025)

Generación de energia

9,800 Mwh/año (5 microturbinas 200 kW)

Monto de Inversion 37,2 millones USD Financiado por la KfW

6 EBAS, PTAR (sedimentación alta tasa, Filtros percoladores, Secado Solar de lodos 5 microturbinas)

Ventajas

- + Systema de tratamiento energeticamente autartico
- + sistema de tratamiento de bajo consumo energetico (**0,1 kwh/m³ de agua tratada**)
- + Bajo impacto en las tarifas de tratamiento (Costo O&M PTAR; 0,041 USD por m³ tratado)

- Mantener la correcta O&M

Desafíos

Mantener la participación de un Operador Privado (Contrato de Operación actualmente hasta el 2022) **Description:** PTAR para la descontaminación del lago de Managua considerando un proceso de bajo consumo energético y el uso del Biogás para la autogeneración de energía eléctrica

^{*} Fichtner realizó factibilidad, diseños, licitación, concepto de Operación -Operador Privado y Auditoria de Operation/Mantenimiento, KfW

Re-adecuando Infraestructura de agua y energía

2.- Re-adecuando la infraestructura de agua a la generación de energía

PTAR Vindobona, Quito, Ecuador (2007)*

Objetivo del proyecto

Saneamiento de los Rios de Quito

Capacidades de tratamiento

PTAR: 7,55 m3/s (Población equivalente de 3.2 mill. hab. En 2045)

Generación de energia

40 MW 2 previas a la entrada

(Hidroeléctricas, 2 previas a la entrada y 1 a la salida)

900 millones USD:

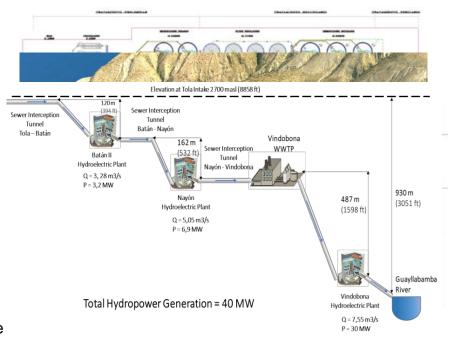
Monto de Inversion 2 emisarios con tuneles , PTAR (remoción de nutrientes), 3 hidroeléctricas.

+ Sistema de tratamiento energeticamente

autartico

Ventajas + se puede comercializar los excedentes de

generación de energia


+ Bajo impacto en las tarifas de tratamiento

- Financiamiento

Desafíos - Participación de un Operador Privado

- Operación y Mantenimiento

Description: PTAR para la descontaminación de la cuenca Guayllabamba considerando la inclusión de proyectos hidroeléctricos en la llegada a la planta y a la descarga

^{*} Fichtner realizó los estudios de factibilidad definiendo las alternativas y los sitios asi como las capacidades de tratamiento y generación, BID

Ahorro agua y de energía

Reciclaje de las Aguas Tratadas de la Ciudad de Riad / Arabia Saudita (2003)*

Objetivo del proyecto Reutilizar los fluentes tratados para reducir así el consumo de agua potable (desalinización) y ahorro de energía

Capacidades de tratamiento

PTARs: Volumen de efluentes tratados disponible en 2030: 1,750,000 m³/d (20 m³/s)

Generación de energia

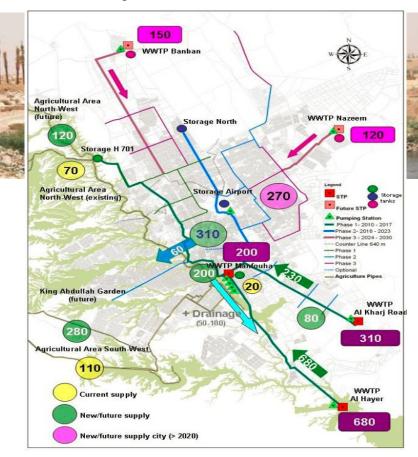
Importante ahorro energético

Monto de Inversion 450 mill. Euros, Financiado Gob KSA
Uso: -irrigación de áreas residenciales,
agricultura, - industria (agua de
refrigeración etc.), - riego de espacios
públicos, - necesidades ambientales y
realimentación de acuíferos

Ventajas

+ Importante ahorro en el uso de agua desalinizada en usos públicos

+ Importante ahorro de energía en la producción y transporte


+ Importante reducción de la fuentes agua

- Participación de un Operador Privado

Desafíos

Operación y mantenimiento


 Aceptación y comercializar el reuso y su pago **Description:** Plan Maestro para integrar los efluentes tratados a nivel terciario a una red de distribución de agua reciclada, tomando en cuenta sistemas descentralizados de tratamiento en vista de reducir el largo transporte a los usuarios de las aguas tratadas.

^{*} Fichtner realizó factibilidad, diseños basicos, concepto de participación de Operador Privado, Gobierno de KSA

Integración de Energías Renovables (ER) en el Sector de Agua

Energía solar fotovoltaica cubriendo los techos de una PTAR

Alemania, Dresde	
Objetivo del proyecto	Generación de energía para la planta de tratamiento de aguas residuales para ahorrar los costos de electricidad.
Capacidad de generación de energía	190 (kW)
Ingresos anuales *	107,055 (USD)
Costos de inversión	1.2 million (USD)
Ventajas	+ Reducción anual de emisiones deCO2 por160 tons + Redujo costos de adquisición de terrenos
Dificultades	 Obtención de ángulos de panel óptimos con orientación de canal Limpieza y mantenimiento de los paneles

Descripción:

(2004)

Instalación de 950 paneles solares en el techo plano del depósito de rebose de agua de lluvia.

www.lopp.de/de/solaranlage-dresden-kaditz.html

Energía solar fotovoltaica flotante en un embalse

Japón, Kyocera (2018)		
Objetivo del proyecto	Generación de electricidad para abastecer a 5.000 hogares	Descr La pla embal
Capacidad de generación de energía	13.7 (MW)	
Ingresos anuales *	780,000 (USD)	
Costos de inversión	Alto (Debido a la construcción de barcazas y a la incorporación de medidas de impermeabilización en los paneles)	
Ventajas	 + Reducción de la evaporación del agua + Aumento de la eficiencia gracias a los sistemas de refrigeración naturales + Reducción del costo de adquisición de tierras + Reducción del crecimiento de algas no deseadas debido a los efectos de sombreado 	
Dificultades	Limpieza y mantenimiento de los panelesSeguridad	

Descripción:

La planta solar flotante más grande del mundo en el embalse de la presa de Yamakura

www.greentechlead.com/solar/kyocera-tcl-complete-2-3-mw-floating-solar-project-work-23779

Ejemplo: PV flotante en canales de irrigación

Gujarat, India

Objetivo del proyecto

- Reducir evaporación. La evaporación en canales de irrigación es un problema en la en India que lastra la agricultura
- Acceso a energía. Discontinuidad de energía eléctrica para uso doméstico o agrícola

Beneficios

- Alto contenido orgánico y algas representan problemas para la salud
- Reducción de químicos en tratamiento de agua
- Sólo en Gujarat hay 19,000 km de canales
- Aumento de disponibilidad de energía en zonas remotas.

Retos y aspectos a considerar

- Instalación más costosa que en sistema convencional. Aspectos geo-hidrológicos (corrosión de las estructuras de soporte)
- Suciedad de material orgánico en superficie de los módulos. Limpieza más compleja
- Vandalismo / Robo
- Impacto visual debe ser estudiado por autoridad ambiental
- Acceso a los módulos y bos

https://www.popularmechanics.com/science/green-tech/news/a16516/indiasingenious-solar-canals/

Muchas Gracias!

FICHTNER Water & Tranportation

Sarweystraße 3 70191 Stuttgart

Teléfono +49 711 8995-444

E-Mail Francisco.Mendozaz@fwt.fichtner.de

FICHTNER GmbH & Co. KG

German Center Av. Santa Fe 170 Col. Lomas de Santa Fe 01219 CDMX

Sarweystraße 3 70191 Stuttgart

Teléfono +521 4313 9247 Teléfono +49 163 8995-724

E-Mail jose-luis.becerra-cruz@fichtner.de www.fichtner.de