Furiosa-L / Pixabay

Biotechnology and genetic engineering

Biotechnology and Genetic Engineering

Innovation Potential – Opportunities Versus Risks: Why Do We Need Biotechnology and Genetic Engineering?

It would be overconfident and a grave mistake to claim that genetic engineering alone will solve all these problems. By no means can it do that! Still, it will be able to better explain some of the connections, on which the cited difficulties are based, and thus contribute towards containing or eliminating them.

Ernst-Ludwig Winnacker, biochemist and knowledge manager

Why Is Biotechnology an Important Social Issue?

Biotechnology and genetic engineering rank among the innovative cross-sectional technologies. They harbour high economic potential and they can help us meet pressing challenges. How do they need to be promoted? What framework conditions are necessary for responsible use? What is more: Where are the boundaries that must not be crossed?

Biotechnology and genetic engineering are not just a topics for experts, it concerns us all. Science and research bear responsibility for society. Politics and society help shape scientific progress.

 

What Is Biotechnology?

In biotechnology, organisms (for example bacteria, fungi, cell cultures) or their components (such as enzymes, other protein etc.) are used for technical processes. Genetic engineering is a new and particularly innovative field based on research, targeted artificial modification and the use of DNA (DNA = genetic material). DNA-based research is an important basis for biotechnology and genetic engineering with the greatest potential for innovation.

 

What Is Old, What Is New?

Micro-organisms were used even at a very early stage in human history – beer, cheese, sour dough, but also penicillin are well-known examples of this. However, it was only in the 1960s that biotechnology became really innovative when it succeeded in specifically modifying the genetic material of living organisms. Genetics, molecular biology and cell biology resulted in an enormous dynamic that continues today.

 

What Are the Fields of Application?

DNA and the genetic code are common to (almost) all living things. The development of sophisticated methods for precisely analysing and specifically modifying DNA has led to a broad field of application:

  • Health (“red” biotechnology/genetic engineering): basic biological/medical research; medical diagnostics and therapy; drugs, vaccines, antibiotics, hormones;
  • Industry (“white” biotechnology/genetic engineering): R&D and production of biogenic substances: Food supplements (e.g., vitamins), technically usable enzymes (e.g., detergents), novel biogenic energy sources (substitutes for fossil energy sources), bio plastics;
  • Agriculture/nutrition (“green” biotechnology/genetic engineering): Breeding research, plant and animal breeding.

 

What Goals Are Being Pursued?

Biotechnology and genetic engineering are used

  • so as to better understand the biological processes;
  • to fight disease (cancer, infectious diseases, hereditary diseases, rare diseases, age-related diseases);
  • to secure and improve nutrition (improving food quality, changing agronomic characteristics);
  • to tap into new resources (including energy sources) (increasing efficiency, bio materials);
  • to improve environmental protection (environmental analytics, environmentally-friendly products and processes, bioeconomy)

Biotechnology and genetic engineering are not a “silver bullet”, their opportunities and risks must be weighed up unemotionally and objectively, however, they do play an important role in addressing the major challenges we face.

Economically speaking, they are essential in the above-mentioned areas and therefore rightly rank among the innovative technologies of the future.

Research (cf. PCR, CRISPR/Cas, iPS cells, NGS, genomics) drives development and maintains innovation at a high level.

 

What Is Socially Relevant?

The Corona pandemic has strikingly reminded us about the need for biotechnological and genetic engineering innovations and the great efficiency of this high-tech industry: All Sars-CoV-2 diagnostics, therapeutics and vaccines (not only the novel RNA vaccines) are unthinkable without biotechnology and genetic engineering. The problem-solving and innovative potential have become clear both in the clinical and pharmaceutical industry.

Particularly noteworthy is the close collaboration between basic research (e.g., virology, molecular biology), small innovative biotech companies and major pharmaceutical firms: The boundaries between (basic) research and (economic) application are becoming blurred.

The Corona crisis also brought the need for political regulation to the fore: R&D funding (financial and structural), framework conditions for innovating companies; as well as legal-ethical questions that society has to address in connection with biotechnology and genetic engineering (biological safety, social justice, ethical-legal permissibility).

 

What Needs to Be Discussed?

The following socio-political questions emerge in connection with biotechnology and genetic engineering, which are discussed by the Konrad-Adenauer-Stiftung:

  • What are the major challenges that can be solved by biotechnology and genetic engineering? Where can they help? Where not?
  • What is the economic potential of biotechnology and genetic engineering?
  • How does the state of biotechnology and genetic engineering in Germany compare to other high-tech locations worldwide?
  • What framework conditions are necessary for strengthening biotechnology and genetic engineering?
  • Where are the risks?
  • Which social aspects need to be taken into account?
  • Where are the red lines that must not be crossed?

 

Why Do on Biotechnology and Genetic Engineering Need to Come Under the Spotlight Again?

The COVID-19 pandemic, in particular, has helped, by means of Sars-CoV-2 diagnostics, therapeutics, and vaccines, which would have been inconceivable without biotechnology, to focus greater political, economic, social and public attention on the topic of biotechnology again.

In connection with rapid advances in biotechnology and genetic engineering and against the backdrop of changing framework conditions, Germany needs a new “biotech strategy”. Here it is a question of how we can use biotechnology and genetic engineering responsibly.

The Konrad-Adenauer-Stiftung addresses all these important questions and aspects on this topic page. Here, you will consistently find new background information in the form of studies, current news and events on this important future issue.


Project on Embryo Protection Law

Family, partnership, desire for children and reproduction are subject to social change. The Embryo Protection Law regulates the most important aspects of embryo protection and reproductive medicine. It has now been in existence for over 30 years and, according to many experts, in need of revision. That is because it is no longer in line with the current state of science and research in many areas. And it no longer meets the needs of those affected. With this in mind, the National Academy of Sciences Leopoldina and the Konrad-Adenauer-Stiftung would like to stimulate a well-founded, social debate on a new regulation of reproductive medicine.

Joint Discussion Platform

 

Reproductive medicine is not only a medical issue, but concerns a plethora of social, ethical and legal aspects. What are the current problems? Where is new regulation needed? We had invited all those concerned and interested to introduce their positions, experiences and opinions to the debate. The period of participation in the discussion expired at the end of January 2022.

 

Learn more about the platform and further process


Event Reports
June 21, 2021
read now

Publications to the topic

Regionen auf dem Weg zum European Green Deal (Symbolbild) AdobeStock/juanjo
Regionen auf dem Weg zum European Green Deal
Auf dem Weg zum European Green Deal: Die Teilnehmenden zeigen sich motiviert, das eigene Handlungsfeld sowie die eigene Region im Sinne des EGD zu entwickeln.
Biotechbranche in Deutschland Image Source RF, stock.adobe.com
Biotech-Branche in Deutschland
Zur Position der deutschen Biotechnologie-Unternehmen: Potenzialanalyse und Handlungsempfehlungen
Frisch produzierte, weiße Tabletten laufen über ein Förderband Bogdan / stock.adobe.com
Pharmastandort Deutschland
Ist die Versorgungssicherheit mit Arzneimitteln gefährdet?
Planspiel planpolitik
Planspiel für Schulen und weitere Gruppen
(Online)-Planspiel Grüne Gentechnik: Heilsbringer oder Teufelszeug?
Dr. Britta Winterberg Britta Winterberg
„In 10 bis 15 Jahren könnten Lebensmittel aus dem Labor Standard sein“
KASkonkret_#39: Unsere Interviewreihe zu aktuellen Fragen der Zeit
A&A Nr. 385 gopixa, iStock by Getty Images
Impfstoffe und Medikamente gegen SARS-CoV-2
Was leistet die Forschung?
Kas.de
Gene und Genome
Innovativ in den Lebenswissenschaften
Medizinische Genomsequenzierung KAS
Medizinische Genomsequenzierung
Bedeutung für Krankenversorgung und Genomforschung
Arbeit im DNA-Labor der University of Michigan School for Environment and Sustainability snre / flickr / CC BY 2.0
Keimbahneingriffe und das kurze Gedächtnis der Öffentlichkeit
Eltern mit Kind zamerzla / flickr / CC BY 2.0
Planbare Schwangerschaft – perfektes Kind?
Wechselwirkungen von Medizin und Gesellschaft
Medizinische Genomsequenzierung | © visualgo / iStockphoto by Getty Images visualgo / iStockphoto by Getty Images
Medizinische Genomsequenzierung: Warum Deutschland nicht länger abseits stehen darf

Media library

Erststimme - Der Podcast für alles außer Corona
Folge 36: Dr. Peter Welters, Gründer von phytowelt: Biotechnologie und Mittelstand – Wie geht das?
In der 36. Folge geht es u. a. um die Fragen: Warum Biotechnologie Potential für die weitere industrielle Entwicklung hat und welche Wünsche die Branche an die Politik richtet.
read now
AI in medicine
The Charité's AI strategy
AI in medical treatment and as an elementary tool for digitalisation - a conversation with Martin Peuker, CIO of Charité (only in German).
Innovationspotenziale der Biotechnologie
Interview mit Rafael Laguna de la Vera über die Innovationspotenziale der Biotechnologie
Über die Rolle der Bio- und Gentechnologie und neue Forschungsmöglichkeiten sprechen wir mit Rafael Laguna de la Vera, Direktor der Bundesagentur für Sprunginnovationen SPRIND.
Innovationspotenziale der Biotechnologie
Interview mit Dr. Sabine Sydow über die Innovationspotenziale der Biotechnologie
Über Potenziale der medizinischen Biotechnologie sprechen wir mit Dr. Sabine Sydow – Leiterin der Interessengruppe Biotechnologie im Verband forschender Pharma-Unternehmen.
Innovationspotenziale der Biotechnologie
Interview mit Dr. Hagen Duenbostel, Vorstandssprecher von KWS in Einbeck
Welche Potenziale neue genomische Verfahren für die #Landwirtschaft haben, darüber sprechen wir mit Dr. Hagen Duenbostel, der Vorstandssprecher von KWS in Einbeck ist.
Innovationspotenziale der Biotechnologie
Interview mit Prof. Dr. Gregor Bucher, Universität Göttingen
Herr Prof. Dr. Gregor Bucher spricht im Interview u. a. über den Stand der Gentechnologie, konkrete Anwendungsmöglichkeiten und Hindernisse bei der Weiterentwicklung.
Innovationspotenziale der Biotechnologie
Interview mit Frau Dr. Viola Bronsema, Geschäftsführerin, BioDeutschland
Frau Dr. Viola Bronsema spricht im Interview u. a. über die Bedeutung der Biotech-Branche für den Innovationsstandort Deutschland und deren Stärke im internationalen Vergleich.