A Comparative Study on Urban Transport System and Related Environmental Impact in Asian Mega-cities: Beijing, Shanghai and Tokyo

Prof. Kebin He
Tsinghua University

Workshop of IGES/APN Mega-city Project
Policy Integration Towards Sustainable Urban Energy Use for cities in Asia, 4-5 February, 2003 in Honolulu
Contents

- Introduction
- Urban Transportation System
- Energy and Environmental Impacts
- Conclusions
- Future Work
1. Introduction
Introduction

■ Rapid urbanization
 ➢ Urban population grows at a rate of 3.6% in Asia and 5% in China

■ Development of megacities in East Asia region
 ➢ Tokyo: the largest city in the world
 ➢ Beijing and Shanghai: the largest cities in China, and have significance on Chinese economic and social development
 ➢ Seoul: has 10.3 million residents, one-fourth of the national population
Introduction

Socioeconomic characteristics of the study cities, 2001

<table>
<thead>
<tr>
<th></th>
<th>Beijing</th>
<th>Shanghai</th>
<th>Tokyo</th>
<th>Seoul</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP/capita (US$)</td>
<td>3060</td>
<td>4500</td>
<td>32700*</td>
<td>8870*</td>
</tr>
<tr>
<td>Population (million)</td>
<td>13.6</td>
<td>16.0</td>
<td>26.4</td>
<td>10.6</td>
</tr>
<tr>
<td>Population Density (pop./km²)</td>
<td>2526</td>
<td>2872</td>
<td>5384</td>
<td>9285</td>
</tr>
<tr>
<td>Vehicle Ownership (per 1000 capita.)</td>
<td>110</td>
<td>48</td>
<td>450</td>
<td>222</td>
</tr>
<tr>
<td>Journey frequency (times/pop. Day)</td>
<td>1.80 (1986)</td>
<td>1.79 (1986)</td>
<td>2.8 (1988)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2.20 (2000)</td>
<td>1.95 (1995)</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Percentage of Journal for Work (%)</td>
<td>30.2 (1986)</td>
<td>27.7 (1995)</td>
<td>16.0 (1998)</td>
<td>-</td>
</tr>
<tr>
<td>By Private Transport (%)</td>
<td>-</td>
<td>1</td>
<td>29</td>
<td>-</td>
</tr>
<tr>
<td>By Public Transport (%)</td>
<td>-</td>
<td>37</td>
<td>49</td>
<td>-</td>
</tr>
<tr>
<td>By Motorcycle, Bicycle and foot (%)</td>
<td>-</td>
<td>62</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

* National level
Work Targets

- Compare urban and transportation system among these four megacities
- Study the energy and environmental impacts of transport system in the three East Asian megacities
- Provide suggestions for the development of sustainable transport system
2. Urban Transportation System
Vehicle population

A. Vehicle population (1000 units)

- Beijing
- Shanghai
- Tokyo
- Seoul

Vehicle population range: 0.0, 1000.0, 2000.0, 3000.0, 4000.0, 5000.0, 6000.0

Vehicle ownership per 1000 person Vs. GDP per capita

Beijing: $k = 0.0654$

Shanghai: $k = 0.0115$

Tokyo: $k = 0.0011$

Seoul: $k = 0.0305$
Urban transport infrastructure - Road

Road area (km²)/person

- Beijing
- Shanghai
- Tokyo
- seoul

Urban transport infrastructure-Road

Vehicle population/km road length

- Beijing
- Shanghai
- Tokyo
- Seoul

Urban transport infrastructure - Railway

Comparison of Subway

<table>
<thead>
<tr>
<th>City</th>
<th>Total Length (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo</td>
<td>248.7</td>
</tr>
<tr>
<td>Seoul</td>
<td>134</td>
</tr>
<tr>
<td>Beijing</td>
<td>55.1</td>
</tr>
<tr>
<td>Shanghai</td>
<td>65.0</td>
</tr>
</tbody>
</table>
Beijing’s Urban railway plan in 2008

the total urban railway length will be 252 km
Growth of Tokyo Railway

Source: Tokyo Urban Transport, Akio Okamoto
Road and Subway system in Seoul

- Intercity freeway
- Urban freeway
- Roads
- Subway
Public transport system

Public transport volume (billion person.times)
3. Energy and Environmental Impacts
Energy and Environmental Impact

- Oil consumption
- CO_2 emission
- Pollutants emissions
 - NO_x, CO, HC, PM$_{10}$, SO$_2$
Fuel economy level of new cars

Japan
Beijing

[Graph showing fuel economy levels for cars of different weights in Japan and Beijing.]
Age distribution of Cars in Beijing

Vehicle population (10^4 units)
Age distribution of Cars in Shanghai
Age distribution of Cars in Tokyo

- VP (10^4 units)
- vehicle age
- year

- 1987
- 1989
- 1991
- 1993
- 1995
- 1997
- 1999
- 2001
- 2003
- 2005
- 2007
- 2009
- 2011
- 2013
- 2015
- 2017
- 2019
- 2020

- 1987
- 1988
- 1989
- 1990
- 1991
- 1992
- 1993
- 1994
- 1995
- 1996
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
- 2016
- 2017
- 2018
- 2019
- 2020
Fuel consumption

Fuel consumption (Million tons)

- Beijing
- Shanghai
- Tokyo

[Graph showing fuel consumption trends for Beijing, Shanghai, and Tokyo from 1995 to 2020]
In 1995, the oil consumption per vehicle in Beijing and Shanghai is about 10 times that in Tokyo.

In 2020, it will be 2-3 times.
CO$_2$ emission (103 tons)
Annual CO₂ emission per unit

Annual CO₂ emission per vehicle (ton)

- Beijing
- Shanghai
- Tokyo

Emission levels from 0.0 to 5.0 tons per vehicle.
Comparison of vehicle emission share-NO\textsubscript{x}

NOTES:
The largest contributor is different among the cities:
- Large truck in Beijing
- Small bus in Shanghai
- Small truck in Tokyo
Comparison of vehicle emission share-CO

NOTES:
- Great contribution of cars
- Obvious MC’s emissions
Comparison of vehicle emission share-PM_{10}

NOTES:
Absolutely the largest contributor-Large truck
4. Conclusions
For urban transport system

- **Beijing and Shanghai**
 - Rapid increase of traffic volume
 - Greater pressure
 - Gradual decline of urban public transport
 - Laggard urban railway construction

- **Tokyo**
 - Perfect urban railway system
 - The development of road transport seems to be stable

- **Seoul**
 - Develop trend is slowed down
For fuel consumption and CO\textsubscript{2} emission

- With only 1/10 of Tokyo’s fleet, Beijing and Shanghai’s fleet tend to consume equivalent amount of oil and emit amount equivalent CO\textsubscript{2}
 - Improve fuel economy
 - Develop urban transport, especially large-scale public transport
 - Adjust transport structure
For pollutants emission

- Smaller vehicle fleets produce much more emission amount in Beijing and Shanghai
 - Further reduce the VMT of vehicles
 - Strengthen control of in-use vehicles
- Different emission issue in the cities
 - Small bus and motorcycle in Shanghai
 - Small truck in Tokyo
 - Large truck in all the cities, especially for its PM emission
5. Future work

- Improve the data
- Improve the scenario
- Complete the Seoul case in the simulation
- Improve the methodology by integrating urban transport plan in the computation
Thanks!
Growth of total civil motor vehicle population in Shanghai
Methodology

2. Vehicle Growth rates by Type (2000-2020)

4. Average Vehicle Emission Factors by Type (2000)
5. Deterioration level
6. Average Vehicle Mileage by Type (1980-2020)

7. New Vehicle Fuel Economy by Type (1980-2020)
8. Average Vehicle Fuel Economy by Type (2000)
9. Average Vehicle Mileage by Type (1980-2020)

- Vehicle Population of New Vehicle by Type (1980-2020)
- Vehicle Age Distribution (1980-2020)
- Average Vehicle Emission Factors by Type (1980-2020)
- Average Fuel Economy by Vehicle Type (1980-2020)
- Vehicle Emission of Each Pollutant by Vehicle Type (1980-2020)
- Fuel Consumption by Vehicle Type (1980-2020)
- Total Vehicle Emission (1980-2020)
- Total Fuel Consumption (1980-2020)

S and C Content of Fuel
Please Readme First!

INPUT

1. Vehicle Population
2. Fuel Specification
3. Fuel Economy
4. Emission Factors

GRAPHIC

1. Vehicle Population
2. Fuel Consumption
3. Pollutants Emission

COMPUTE
基准年(1999)排放及浓度贡献(6)
基准年(1999)排放及浓度贡献

1999年北京城八区 NO2 浓度分布等值线图（ug/m3）